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Foreword

I am delighted to introduce Robot Perception and Learning: A Human-Aware Navi-
gation and Long-Term Autonomy Perspective by Dr. Zhi Yan. [ have had the pleasure
of knowing and working with Zhi for many years, and this book reflects his important
contributions to robotics, both in theory and practice.

This work takes readers through Zhi’s decade-long journey in robotics, from the
early challenges of labeling data for cleaning robots to developing a strong frame-
work for how robots can learn and adapt in complex environments with people. It
provides a detailed overview of research aimed at improving robot perception and
learning, focusing on human-aware navigation and long-term autonomy. Key topics
include benchmarking methods, 3D lidar-based object detection and tracking, and
the emerging field of robot online learning (ROL). The book highlights the impor-
tance of standardized benchmarks and open datasets, introduces new techniques for
processing point cloud data, and explores ROL’s role in helping robots learn over
time. It also presents solutions for challenges like generating training samples auto-
matically and mitigating catastrophic forgetting. The book applies these ideas to
socially aware robot navigation. While challenges remain—such as missing ground
truth data and engineering limitations—it offers insightful ideas for future research,
like combining online learning with reinforcement learning, improving prediction
skills, and addressing privacy concerns.

Overall, this book is a valuable resource for advancing robot perception and
learning, especially in the context of human-aware, long-term autonomous systems.
It is particularly useful for graduate students, researchers, and professionals looking
to understand the key ideas shaping this fast-growing field.

Zhi’s work, through his research and open-source contributions (available via the
provided links), has continuously driven innovation in robotics. The same applies
to this book, which I believe will be a great resource for anyone working on robot
perception and learning. I highly recommend it to anyone interested in the future of
intelligent autonomous robots.

Padua, Italy Nicola Bellotto
February 2025
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Preface

In 2015, I received a task from Dr. Nicola Bellotto to let a professional cleaning
robot identify the points representing humans in the point cloud generated by 3D
lidar. Then, based on the research progress at that time, I developed a point cloud
annotation tool, collected point cloud data, manually annotated thousands of point
cloud frames, and then trained an SVM model, tested with the robot, tuned the
training parameters, and trained the model again. Then suddenly the robot changed
its deployment environment, and I needed to collect data again and annotate them
again, over and over again. Later, in Cyprus, I complained to Nicola, why can’t the
robot learn these boring point clouds by itself? After returning to Lincoln, Dr. Tom
Duckett joined the discussion, and finally in July 2016, we completed the draft of
our first “robot online learning” paper together.

Since 2015, robot perception and learning have been the main line of my research.
Ten years later, the results of my own research and those I supervised were recog-
nized at the Institut Polytechnique de Paris, and I was finally enabled to obtain the
Habilitation a Diriger des Recherches in France. To this end, I needed to prepare a
thesis to systematically summarize my research since my doctoral defense. This led
to the writing of this book.

The pursuit of truly intelligent robots capable of operating effectively in complex
and unstructured environments has driven significant advancements in both percep-
tion and learning. While traditional robotics often relied on pre-programmed instruc-
tions and carefully engineered environments, the increasing demand for mobile
robots that can adapt, interact, and learn from their environment and experience has
propelled the field towards embodied intelligence. This paradigm emphasizes the
crucial role of physical embodiment in shaping perception, action, and cognition,
leading to more robust and adaptable robotic systems.

This book aims to provide an overview of the latest research at the intersection of
these crucial areas, with a particular focus on 3D lidar-based perception and robot
online learning methods, with downstream tasks including human-aware robot navi-
gation and long-term robot autonomy. It is structured as follows: Chap. 1 introduces
the background of the research, the content positioning, and some related open-
source resources. Chapter 2 discusses some benchmarking issues related to the field



< Preface

of embodied intelligence and mobile robotics. Chapter 3 introduces robot perception,
especially the object detection and tracking based on 3D lidar with contemporary
characteristics. Chapter 4 introduces robot learning, especially robot online learning
methods with strong embodied intelligence features. Chapter 5 summarizes the book
and provides prospects for future research and application directions.

This book is intended for researchers and practitioners already familiar with the
fundamentals of mobile robotics, including graduate students, Ph.D. candidates, post-
doctoral researchers, and industry professionals working in related fields. This book
is not a textbook in the traditional sense; it does not delve into basic introductory
material. Instead, it focuses on presenting the core methodologies and principles
that drive cutting-edge research, providing a structured overview of key concepts
and recent developments. Detailed experimental results and specific implementation
details are intentionally omitted to maintain a focus on the broader theoretical and
methodological underpinnings, encouraging readers to consult the original research
papers for in-depth analysis and practical implementation strategies.

This book would not have been possible without the contributions of numerous
researchers whose work forms the foundation of this field. We gratefully acknowledge
their invaluable contributions and hope that this book serves as a useful resource for
those seeking to understand and contribute to the future of robot perception and
learning. We also extend our sincere thanks to any reviewers who provided feedback
on drafts of this material. We sincerely hope that this book inspires new research
directions, facilitates collaboration within the community, and ultimately contributes
to the advancement of embodied intelligence and mobile robotics.

Palaiseau, France Zhi Yan
January 2025
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Chapter 1 ®)
Introduction Check for

Abstract This chapter establishes the research context of this book: embodied intel-
ligence. It clarifies the research focus: leveraging computer science principles to
develop mobile robots as productive tools for human society. Finally, it presents
relevant open-source projects related to the content discussed herein.

Keywords Artificial intelligence - Embodied intelligence - Mobile robotics

1.1 Research Background

The continuous development of robot hardware and software is pushing the capabili-
ties of robots to a new boundary, and this boundary is getting closer and closer to our
imagination of robots, as portrayed in countless science fiction works. These robots
serve our human society by interacting with us as well as the same environment we
live in, and one of the enabling capabilities is the so-called embodied intelligence.
So, what is embodied intelligence? Embodied intelligence refers to an intelligent
system that perceives and acts based on the physical body, which obtains informa-
tion, understands problems, makes decisions and implements actions through the
interaction between the intelligent agent and the environment, thereby producing
intelligent behavior and adaptability. The germination of its ideas can be traced back
to the birth of Artificial Intelligence (AI), as Alan Turing wrote [1]:

We may hope that machines will eventually compete with men in all purely intellectual
fields. But which are the best ones to start with? Even this is a difficult decision. Many
people think that a very abstract activity, like the playing of chess, would be best. It can also
be maintained that it is best to provide the machine with the best sense organs that money
can buy, and then teach it to understand and speak English. This process could follow the
normal teaching of a child. Things would be pointed out and named, etc.

Playing chess can be seen as disembodied intelligence, such as what Deep Blue in
the last century and AlphaGo in this century presented to people. The example of
understanding and speaking English can be seen as embodied intelligence, corre-
sponding to the topic that this book wants to discuss. These two different examples
actually reveal the difference between agents and robots as per [2]:

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026 1
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Fig. 1.1 Disembodied intelligence (left, image source: internet) versus embodied intelligence
(right)

We should be careful not to confuse multi-robot systems (MRS) with multi-agent systems
(MAS) and distributed artificial intelligence (DAI), as MAS usually refers to traditional
distributed computer systems in which individual nodes are stationary, while DAl is primarily
concerned with problems involving software agents. In contrast, MRS involves mobile robots
that can move in the physical world and must physically interact with each other.

Figure 1.1 gives an intuitive impression of the differences between disembodied
intelligence! and embodied intelligence. In the meantime, Turing’s second example
also brings out two aspects that this book is concerned about: (robot) perception and
learning.

So why do we, or rather robots, need embodied intelligence? First, as mentioned
earlier, a robot is an entity that essentially needs to physically interact with the real
world (assuming the world we are in is not virtual). From a philosophical point of
view, individuals who lack embodied cognition lack actual existence, which is similar
to Descartes’s point of view “I think, therefore lam”, which is opposite to Heidegger’s
later “I am, therefore I think”. Second, in the physical world, context plays a crucial
role in semantic understanding, and the lack of embodied intelligence will make it
difficult for robots to make informed decisions based on situational awareness. Last
but not least, the physical environment in which robots operate changes, slow like
the seasons and fast like a pedestrian. The lack of embodied intelligence makes it
difficult for robots to cope with changes in the real world.

1.2 Research Positioning

The research positioning of this book remains consistent at the macro level, that is,
rooted in computer science to empower mobile robots with embodied intelligence
and make them a productive tool for human society. But at the micro level it includes

! Tmage source: Google DeepMind (https://www.youtube.com/@Google_DeepMind).
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symbolic methods, statistical methods, connectionist methods, and activist methods.
Specifically, this book investigates two issues. One is how to make a robot aware
of the surrounding objects such as humans through embodied perception, including
their detection and tracking [3], to provide necessary information for downstream
tasks such as safe and even social robot navigation. The other is how to make a
robot autonomously and spontaneously learn from its sensor data to understand its
surroundings [4], such as humans in various forms, to achieve out-of-the-box usage
and long-term robot autonomy.

Regarding the first issue, this book focuses on leveraging embodied non-visual
sensors, especially 3D lidar [5], to achieve large-scale and long-range human per-
ception. This sensor can intuitively provide the object distance information required
for the robot to move without collision. Compared to traditional 2D laser rangefind-
ers, it can provide laser measurement points in multiple planes, enabling the robot
to detect objects based on a set of 3D points (called a point cloud) representing the
environment. An intuitive understanding of the data generated by 3D lidar is shown in
Fig. 1.2. Specifically, a tree search-based method is used to segment the point cloud,
and then an Support Vector Machine (SVM) is used to classify the segments into
two categories to determine which points represent humans and which points do not.
This belongs to human detection. Subsequently, the segments representing different
people in different point cloud frames are associated using the Global Nearest Neigh-
bor (GNN) method, and their states are estimated using the Unscented Kalman Filter
(UKF) method, to enable tracking of humans. The detection and tracking methods
mentioned above are both statistical methods.

Regarding the second issue, this book focuses on a method that aims to give robots
an Online Learning (OL) capability [6] (the idea is shown in Fig. 1.3), enabling them

Fig. 1.2 Human detection and tracking in 3D point clouds [6]. Detected humans are enclosed in
green bounding boxes. The colored lines are human movement trajectories generated by a multi-
target tracker [7]
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Fig. 1.3 Principle diagram
of Robot Online Learning
(ROL). It is easy to
understand that by adding a
learning module to the
classic operational definition
of service robots
“sense-think-act”, online
learning is established,
forming
“sense-learn-think-act”. The
dashed boxes on both sides
indicate that the modules
included are closely related
and can sometimes even be
merged into one module

to absorb some new knowledge in the short term and maintain long-term memory
of this knowledge. This kind of robot learning is on-site, on-the-fly, and faces a
unique challenge that is different from the traditional field of machine learning: the
data entering the learning system is often unforeseen and unannotated. It is worth
pointing out that this book aims to propose a general learning method / framework
(with dynamic representation capabilities) rather than a learning model. In other
words, the proposed learning method should theoretically be able to incorporate
different learning models. The theoretical basis of Robot Online Learning (ROL) is
statistics.

It is worth mentioning that although this book focuses on the robot’s learning of
the environment, the robot’s reasoning about the environment is highly related to the
former and is often studied together. For example, a robot could learn to predict when
humans are present at specific times and places by using, for example, statistical
methods, including heat maps [8] and histograms [9—12], to build spatiotemporal
models of the robot’s long-term observations. On the other hand, the robot can also
predict human motion trajectories, for example by using Long Short-Term Memory
(LSTM) [13] to learn a predictive model from long-term robot deployment data [14].

The topological structure of the content of this book is shown in Fig. 1.4. Over-
all, the discussion is about how to build the embodied intelligence of robots from
the two aspects of robot perception and learning. The downstream tasks mainly
include human-aware robot navigation and long-term robot autonomy. In addition
to the study of embodied intelligence methods themselves, the book also contains
a chapter discussing how to effectively test and evaluate these methods and facili-
tate comparisons between different ones. The latter absorbs the agile development
methods in the field of software engineering (as shown in Fig. 1.5), advocates the
implementation of rapid closed-loop iterations for the development of new methods,
and always prioritizes benchmarking when conducting experiments [15-19].
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Fig. 1.4 Topology of the book’s contents

Fig. 1.5 Schematic diagram of agile development methodology in software engineering

1.3 Related Open Source Projects

Open science has been advocated and is gaining more and more attention. This
section lists some open source projects related to the content of this book. Some of
them will be mentioned again in their corresponding chapters.

e Open research data:

— L-CAS 3D Point Cloud People Dataset? [6]: This dataset was collected with a
16-layer 3D lidar mounted on a mobile robot, in one of the main buildings of
the University of Lincoln, UK. It includes 28,002 scan frames recorded by the
robot while stationary and moving, with a total length of 49 min. About 20% of
the data was manually annotated to form ground truth.

2 https://Icas.lincoln.ac.uk/wp/research/data- sets-software/I-cas- 3d-point-cloud-people-dataset/.
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L-CAS Multisensor People Dataset® [20]: This dataset is a supplement to the
previous one, adding sensor data from an infrared camera and a 2D laser
rangefinder.

FLOBOT Perception Dataset* [8]: This dataset was collected using FLOBOT
(an advanced autonomous floor scrubber) in public places in Italy and France
including an airport, a supermarket and a warehouse. It includes data from
four different sensors, including a 3D lidar and an RGB-D camera for human
detection and tracking, and another RGB-D and a stereo camera for ground dirt
and object detection. Additionally it contains the pose of the robot in the world
reference frame.

EU Long-term Dataset with Multiple Sensors for Autonomous Driving® [21]:
This dataset was collected over a year in Montbéliard, France, in the city center
(for long-term data) and in the suburbs (for roundabout data) using a vehicle
equipped with 11 different sensors. For long-term data, the driving distance in
each round is approximately 5.0 km (including a small loop and a large loop for
loop closure), and the length of recorded data is approximately 16 min. For the
roundabout data, the driving distance of each collection round is about 4.2 km
(including 10 roundabouts of different sizes), and the recording data length is
about 12 min.

e Open source code:

Adaptive Clustering® [6]: This is a lightweight and accurate point cloud
clustering method implemented in C++.

Online Learning for Human Classification in 3D LiDAR-based Tracking” [6]:
This is the code released with the paper, which allows the robot to learn a human
model in the point cloud online at runtime without human intervention.

Online Continual Learning for 3D Detection of Road Participants in
Autonomous Driving8 [18, 19, 22]: This is the code released with the paper,
which allows self-driving cars to learn models of various road participants
from point clouds online at runtime, quickly, continuously, and without human
intervention.

Online Context Learning for Socially-compliant Navigation® [23]: This is the
code released with the paper, which allows mobile robots to discover differ-
ent human social contexts when deployed in changing or across environments,
thereby generating robot navigation with social attributes that conform to the
context.

3 https://Icas.lincoln.ac.uk/wp/research/data-sets- software/I-cas- multisensor- people-dataset/.
4 http://1cas.github.io/FLOBOT/.
3 https:/epan-utbm.github.io/utbm_robocar_dataset/.

6 https://github.com/yzrobot/adaptive_clustering.

7 https://github.com/yzrobot/online_learning.
8 https://github.com/Rui Yang- 1010/efficient_online_learning, https://github.com/RuiYang-1010/

Istol.

9 https://github.com/Nedzhaken/SOCSARL-OL.
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e Open software and hardware:

— Multi-robot Exploration Testbed'? [24]: This testbed allows dozens of mobile
robots to be repeatedly deployed in a 3D simulation scene driven by a physics
engine to perform environment exploration tasks, and automatically collect
various performance data during task execution for later analysis.

— L-CAS 3D Point Cloud Annotation Tool'' [25]: This tool provides semi-
automatic annotation of point cloud data, whereby the point cloud is first
automatically segmented and then each segment is labeled by humans.

— Human-aware Robot Navigation Sysz‘em12 [15, 26]: This is an open source
hardware and software integration solution for building a mobile robot with
human-aware navigation capabilities.

e Open educational resources:

— Introduction to Mobile Robotics'*: This course is designed to introduce basic
concepts and techniques used in the field of mobile robotics. Relevant funda-
mental problems and challenges are analyzed, and both classic and cutting-edge
solutions are illustrated.

1.4 Book Organization

Chapter 2 introduces the work on mobile robot software engineering, which mainly
includes benchmarking of robot performance including evaluation methods, metrics,
construction of testbeds and datasets, etc. In addition, some insights and thoughts on
how to integrate Al into testing tools, benchmarking ethics, and data privacy, which
are some of the aspects involved in modern Al development, is given. Although the
latter are not the focus of the discussion in this chapter, it is still interesting to share
some of the author’s experiences and opinions, because these issues are increasingly
unavoidable in today’s research activities. Starting the main body of the book with
the topic of benchmarking is a bit like the idea of “testing before development” in the
field of software engineering, that is, we need to understand how to evaluate them
before we really discuss the methods for realizing embodied intelligence. Moreover,
this also happens to be consistent with the actions of the European Commission, that
is, it would be a good choice to formulate a standard before vigorously developing Al
to prevent its development from being uncontrolled and unregulated, which would
lead to disastrous consequences [27].

10 https://github.com/yzrobot/mrs_testbed.

1 https://github.com/yzrobot/cloud_annotation_tool.

12 https://github.com/Nedzhaken/human_aware_navigation.
13 https://yzrobot.github.io/introduction_to_mobile_robotics/.
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8 1 Introduction

Chapter 3 introduces the work on robot perception. In a systematic way, the
research motivation is first introduced, which is to use embodied sensors and onboard
computing for large-scale human detection and tracking in public (non-home) envi-
ronments. Then the contemporary 3D lidar adopted as an embodied sensor, from
its basic working principle to its relevant applications in the field of mobile robots,
is introduced. Next, the “adaptive clustering” method developed by the author is
introduced, and the advantages and limitations of the proposed method is illustrated
by comparing its performance with other popular methods at the time. Then, sev-
eral hand-crafted features extracted from point clouds with proven performance for
human model training are introduced. Finally, a multi-target tracker optimized for
deployment in point clouds is introduced.

Chapter 4 introduces the work on robot learning, including a systematic study
of ROL frameworks. First, what is ROL and why robots need OL are explained.
Then, two ROL frameworks are introduced, one based on P-N learning and the
other based on knowledge transfer. The advantages and disadvantages of the two
methods are analyzed. Simply put, the former does not require external help but
will produce self-bias, while the latter can avoid self-bias but requires external help.
In addition, the latter also needs to resolve conflicts between internal and external
parties. Next, the issue of how to alleviate catastrophic forgetting in the long-term
process of ROL is addressed. Finally, how to leverage ROL to improve the perfor-
mance of socially-compliant robot navigation in long-term and cross-environment
deployments is introduced.

Chapter 5 summarizes the full text and gives prospects for future research.
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Chapter 2 ®)
Benchmarking in Mobile Robotics e

Abstract This chapter presents a study on software engineering for mobile robotics,
focusing on benchmarking robot performance, including evaluation methods, met-
rics, and the construction of testbeds and datasets. It also offers insights into integrat-
ing Al into testing tools, benchmarking ethics, and data privacy, aspects increasingly
relevant to modern Al development. While these latter topics are not the primary
focus of this chapter, sharing the author’s experiences and perspectives is nonetheless
valuable, given their growing importance in contemporary research. Beginning this
book with benchmarking aligns with the software engineering principle of “testing
before development”, emphasizing the need to establish evaluation methodologies
before discussing methods for realizing embodied intelligence. This approach also
resonates with the European Commission’s emphasis on formulating standards prior
to extensive Al development to mitigate the risks of uncontrolled and unregulated
advancements, which could lead to detrimental consequences.

Keywords Benchmarking - Evaluation metrics + Testbed - Dataset

2.1 Introduction

Benchmarking refers to the evaluation of different methods using the same evaluation
process—including using the same test data—and the same evaluation metrics. From
author’s point of view, benchmarking is a double-edged sword. On the one hand it can
make comparisons between different methods easier (e.g. without reproducing the
results of the compared methods) and fairer, but on the other hand it drives methods to
overfit to specific benchmarks. Regarding the former aspect, a pioneering work in the
robotics community is the benchmarking of different Simultaneous Localization And
Mapping (SLAM) methods [1]. Other work includes the KITTI [2] and Waymo [3]
benchmark suites, which are widely used in modern autonomous driving. Regarding
the latter aspect, further explanation is given at the end of this chapter using the
KITTI benchmark suite as an example.
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2.2 Benchmarking Process

The benchmarking process broadly consists of four parts/phases. As shown in
Fig. 2.1, first, the experimental design and execution rules are clearly defined by
the experimenter. The former includes the specified experimental parameters and
the data that need to be collected during the experiment run. The latter includes
the specific steps to conduct the experiment, the number of repetitions, completion
conditions, results submission methods, and so forth. Then there is the execution of
the experiment, which is ideally fully automated (i.e. without human intervention)
in order to increase experimental efficiency. Unless the experiment is deterministic,
i.e. does not contain any stochastic component or model, it should be repeated multi-
ple times so that the results can be subsequently analyzed statistically. Furthermore,
repeated runs of the same experiment should be independent of each other and can
be performed sequentially or in parallel depending on available resources. Later, the
collected experimental data is evaluated using defined metrics. Finally, the evalua-
tion results of different methods following the same process are organized to form
benchmark results in order to characterize their advantages and disadvantages.

2.2.1 Parameters

Benchmark parameters need to be task-specific. Effectively identifying and defining
them is critical to benchmarking as well as the development and improvement of
methods. Operational Design Domain (ODD), which has attracted attention in the
field of autonomous driving in recent years, is a typical example with the character-
istics of the times. It aims to detail all conceivable overlapping conditions, use cases,
restrictions and scenarios that autonomous vehicles might encounter, even the most
unusual (edge) cases. Common ODD conditions include lighting, weather, terrain,
and road type, but enumerating them all is very challenging. Three specific examples
are used below to further illustrate the parameters in benchmarking.

Fig. 2.1 A full benchmarking process: from experimental design to metric measurements [4]
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2.2.1.1 Multi-Robot Exploration

Due to the complexity of multi-robot systems, there are many parameters that can
influence the experimental results. The most relevant parameters for multi-robot sys-
tems to perform exploration tasks are explored here as per [4], including three aspects:
“robot”, “team” and “environment”. The goal is to provide the community with a
basis for building a database of benchmark settings, where each setting corresponds

to a different set of parameter configurations.

e Robot:

— Geometric characteristics such as size and shape.

— Physical characteristics such as weight and appearance.

— Chemical characteristics such as material (involving sensor (installed on other
robots) or environmental sensitivity).

— Mechanical characteristics such as holonomic or non-holonomic.

— Kinematic characteristics such as speed and acceleration.

— Integrated sensor properties such as sensing modality and sampling frequency.

— Onboard computing resources such as CPU and RAM.

e Team:

— Number of robots. The greater the number does not mean the better the perfor-
mance of the multi-robot system [5].

— Qualitative nature of the team such as homogeneous or heterogeneous.

— Initial position of the robots which may have a significant impact on the team’s
exploration performance [5].

— Means of communication such as explicit communication or implicit commu-
nication [6]. The former further includes parameters such as communication
bandwidth and communication range, while the latter further includes parame-
ters such as communication media and information life cycle.

e Environment:

— Area. Exploring a large environment may be more challenging than exploring
a small one (due to sensor capabilities, robot endurance, the robot’s or team’s
ability to handle accumulated errors, etc.)

— Terrain such as flat ground and slope.

— Landform include the form and layout of the environment, the shape and density
of obstacles, etc.

— Material of obstacles. For example, lidar cannot easily detect glass but sonar
can, too many walls can affect Wi-Fi signal, etc.

— Surface texture such as grass and gravel.

— Dynamics such as slow changes like layout and fast changes like pedestrians.

— Weather condition such as sunny or adverse.

— Lighting condition which mainly affects passive visual sensors.
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2.2.1.2 Detection of Road Participants

The parameters that affect the performance of road participant detection [7, 8], or
more generally, object detection based on sensor data, can also be divided into three
categories including “robot”, “object” and “environment”. Overall, the identified
parameters related to “robot” and “environment” are less than those for the “multi-
robot exploration” task, since the reactive perception of road participants is the focus
of this book. In contrast, if robots or autonomous vehicles perform detection tasks in a
proactive manner, then the same parameters defined in the “multi-robot exploration”

task can be shared.
e Robot:

— Integrated sensor properties which constitute decisive parameters, since robot
perception relies on various sensors [9].

— Onboard computing resources. In addition to traditional CPU and RAM, GPU
has become one of the most important parameters in this era.

e Object:

— Geometric characteristics such as size and shape.

— Physical characteristics such as color and texture.

— Chemical characteristics such as surface material (fabric, metal, rubber, etc.)

— Biological characteristics such as temperature and movement patterns (e.g.
humans walking upright [10]).

— Kinematic characteristics such as speed and acceleration.

e Environment:

— Dynamics which mainly cause occlusion of objects and affect context-based
detection.

— Material of occluders. For example, some millimeter wave radars can penetrate
drywall, wood, glass and more [11].

— Weather condition such as sunny or adverse.

— Lighting condition which mainly affects passive visual sensors.

— Temperature condition which can affect certain temperature-sensitive sensors
such as thermal imagers [12]. Or, too low or too high ambient temperature can
cause the camera to generate more noisy data.

— Discriminability represents the extent to which the robot is able to distinguish
objects from the environment.

2.2.1.3 Human-Aware Robot Navigation

This task [13] can be seen as a cross between the previous two, taking into account
the parameters of both the robot as an active entity and the human being as the
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detected object. In addition, the interaction between robots and humans needs to be
considered, which in this book aims to be socially-compliant. The latter prompts the
need to additionally discern two parameters in the navigation task, each from the
“robot” and “human” aspects.

e Robot: In addition to common parameters with the above two tasks including
geometric, physical, mechanical and kinematic characteristics, integrated sensor
properties, and onboard computing resources, it also includes:

— Sociality such as pleasing or repulsive appearance.

e Human: In addition to the same parameters related to the “object’ as in the previous
task, including physical, chemical, biological and kinematic characteristics, it also
includes:

— Psychological factors such as acceptance and trust in robots.

e Environment: This part of the parameters takes the set of corresponding parameters
of the above two tasks.

2.2.2 Metrics

Metrics, or sometimes Key Performance Indicators (KPIs), are used to quantify the
performance of a system (or method, model, etc.) in order to analyze its strengths
and weaknesses and also to facilitate comparisons between different methods. Met-
rics can be task-independent or task-related. An example of the former is the per-
formance evaluation of the robot itself, such as onboard computing power, which
can be achieved by quantifying the performance of integrated components such as
CPU, RAM, network transmission, etc. The definition of task-related metrics aims
to evaluate the ability of robots to complete specific tasks, and it should strive to be
standardizable. Below, corresponding to the three examples mentioned in Sect. 2.2.1,
the evaluation metrics used are presented.

2.2.2.1 Multi-Robot Exploration

For the multi-robot exploration task, the overall performance of the robot team rather
than the performance of a single robot is evaluated because, essentially, it is hoped
that the performance differences between different multi-robot coordination methods
can be reflected through evaluation from a global perspective.
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Exploration time

This is one of the most commonly used metrics for exploration tasks and measures
the time it takes for a team of robots to complete a given exploration task [5, 14, 15].
Its definition can be rigorously described as: timing starts when any robot in the team
starts to perform the exploration task and ends when any robot in the team obtains
a predetermined percentage of the exploration information (such as a map) in the
specified space. Time is measured in wall clock time. Moreover, one of the objectives
of multi-robot exploration optimization is to minimize the overall exploration time.
The challenge in achieving this remains to move each robot to an optimal position
that maximizes the exploration area (i.e. information gain) and simultaneously min-
imizes robot usage (e.g., the “exploration cost” mentioned below). Unfortunately,
this problem is known to be NP-hard.

Exploration cost

The distance traveled is often used to estimate the cost of a mobile robot performing
a task [5]. The exploration cost is defined as the sum of the distances traveled by all
robots in a team:

cost(n) = Z d; 2.1)

i=1

where n is the number of robots in the team, d; is the distance traveled by robot
i. In fact, in multi-robot exploration an estimate of the distance each robot will
travel is often used to calculate the cost for task allocation [14—16]. Furthermore,
the exploration cost can have different definitions according to user needs, such as
energy consumption, computing and communication resource occupation, etc.

Exploration efficiency
Efficiency is usually measured as the ratio of useful output to total input. In terms of

exploration, it is directly proportional to the amount of information the robot team
collects from the environment and inversely proportional to the cost it incurs [17]:

efficiency(n) =

cost(n) 2.2)

where A is the total area explored. For example, the area is measured in square
meters, and if the exploration efficiency is 1.6, this means that, on average, every
time the sum of all robot movements in a team is 1 m, the entire team should have
explored an area of 1.6 m?.
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Exploration safety

Collision avoidance is one of the basic requirements for mobile robots. For multi-
robot systems, the risk of collision increases with the size of the team. Therefore, the
safety metric valued in robotic systems is defined as:

er'l:l Si

fet =1-
safety(n) 3

(2.3)
where S represents a predefined base, s; is the number of collisions experienced by
robot i. The larger the value of safety, the higher the safety of the multi-robot system
being evaluated.

2.2.2.2 Detection of Road Participants

The object detection task is generally defined as given a frame of sensor data, finding
the object of interest and determining its location and category (or class). Measuring
its performance requires introducing a concept called “ground truth”. The latter refers
to the true label or reference data used to train and evaluate supervised learning
models, which is usually provided by humans. However, it is important to note that
the ground truth is sometimes not objective reality, but rather a human interpretation,
and thus may contain biases and errors. Calculating the various differences between
the results given by the computer and the ground truth constitutes the evaluation of
object detection performance. The metrics to be introduced in this section include
confusion matrix, F-score, Intersection over Union (IoU) and Average Precision
(AP). The first two are often used to evaluate object classification performance,
while the latter two are used to evaluate object detection performance.

Confusion matrix

The confusion matrix is a specific tabular data that allows a visual display of the
classification results of a model. It is particularly suitable for multi-classification
problems, as it not only shows the classification performance but also shows which
class was incorrectly classified. Each row of the matrix represents an instance in the
actual class, while each column represents an instance in the predicted class. For an
intuitive understanding, Fig. 2.2 shows a confusion matrix for a binary classification
problem. Where:

True Positive (TP) means a positive example is predicted correctly.
False Positive (FP) means a negative example is predicted incorrectly.
False Negative (FN) means a positive example is predicted incorrectly.
True Negative (TN) means a negative example is predicted correctly.
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F-score

The F-score, also known as the F1-score or F-measure, is a commonly used metric
used to evaluate the performance of a binary classification model. It takes into account
the precision and recall of the algorithm, aiming to find a balance between the two.
Precision is the proportion of positive results that are actually positive. Recall is the
proportion of actual positive cases that are correctly identified. The F-score is the
harmonic mean of precision and recall, calculated as follows:

. 1
Fes. prec.lsllon reca 2.4)
precision + recall

where
TP

recall = ———
TP + FN

precision = (2.5)

TP
TP + FP’

In multi-classification problems, there are two ways to calculate F-score: one is
called Micro F-score and the other is called Macro F-score. The former is calculated
by first summing the true positives and false positives for all classes, and then cal-
culating the F-score from these totals. In other words, it treats all classes as if they
were one big class. While the latter is calculated by first calculating the F-score for
each class, and then averaging the scores across all classes. In other words, it treats
each class as its own entity. The advantage of Micro F-score is that it can reflect the
overall performance across all classes, but the disadvantage is that it might overesti-
mate performance due to the dominance of the majority class in imbalanced datasets.
The advantage of Macro F-score is that it gives equal weight to each class, ensuring
all classes contribute equally to the score, but the disadvantage is that it might not
directly reflect the overall performance, especially if class distributions differ signif-

Fig. 2.2 Confusion matrix
for binary classification



2.2 Benchmarking Process 19

icantly. For example, the overall performance is good, but some individual classes
have low F-scores. In summary, it’s often beneficial to consider both Micro F-score
and Macro F-score to gain a comprehensive understanding of a model’s performance
across different aspects.

Intersection Over Union

ToU, also known as the Jaccard index, calculates the ratio of the intersection and
union of the “predicted bounding box” and the “true bounding box” (i.e. ground
truth), which is formulated as follows:

Area(B, N B,)

(2.6)
Area(B, U B,)

IoU(B,, B,) =

which can be visualized as [18]:

The above definition and calculation consider a 2D plane, but can be straight-
forwardly extended to 3D space. In general, the IoU threshold is set to 0.5, that is,
when IoU > 0.5, it is considered a true detection, otherwise it is considered a false
detection. However, the community usually adjusts the corresponding IoU according
to the size of the objects being detected. For example, the KITTI [2] and Waymo [3]
evaluation suites employ a 50% overlap threshold for pedestrians and cyclists but a
70% threshold for cars.

Average Precision

Similar to the F-score, AP also takes into account both the precision and recall of a
model, but measures the area under the precision-recall curve, which represents the
overall ability of the model to rank positive examples above negative ones. A higher
AP value indicates a better balance between precision and recall, meaning the model
can correctly identify positives while minimizing false positives. It is formalized as
follows:

1

AP = / p(r)dr 2.7)

0
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where p(r) is the precision at recall level r.
In actual calculation, the interpolation method can be used:

1
AP = ﬁ Z pinterp(r) (28)

rer

where piyserp (r) = max,..»», p(r'), which means selecting the maximum recall rate
at a fixed precision value. Taking the KITTI evaluation setting as an example, 11
equally spaced recall levels are applied, i.e., Rj; = {0,0.1,0.2, ..., 1}. The limita-
tion of AP is that its results are sensitive to the choice of IoU threshold and cannot
distinguish the location accuracy of the predicted bounding box.

2.2.2.3 Socially-Compliant Robot Navigation

The social acceptability of robot navigation around humans can be evaluated from
both human and robot perspectives. As human-aware robot navigation constitutes a
form of Human-Robot Interaction (HRI), considering the experiences of both humans
and robots leads to a more comprehensive and unbiased evaluation. Beyond the sep-
arate application of established Robot-Centric Metrics (RCM) and Human-Centric
Metrics (HCM), recent research has explored the latent correlations between these
metrics through extensive benchmarking [13]. This approach aims, first, to assess
the social attributes of robot navigation using only RCM when HCM are impractical
to apply, and second, to enable online optimization of the robot’s social navigation
performance based on real-time system evaluations derived from RCM [19].

Robot-centric metrics

Five RCMs commonly employed in the literature are listed below.

e The extra time ratio quantifies the additional time a robot requires to complete a
task in a human-shared environment [20-22]. It is defined as:

T

Thuman

Rlime = (29)

where T and Tyyman are the time it takes for the robot to complete the task without
and in the presence of humans, respectively.

e The extra distance ratio evaluates system performance by quantifying the addi-
tional distance a robot travels in the presence of humans [23, 24]. It is defined

as:
R b (2.10)
distance = 55 .
‘ Dhuman



2.2 Benchmarking Process 21

where D and Dyyman denote the distance the robot needs to travel to complete a
task without and in the presence of humans, respectively.

e The success ratio quantifies a robot’s ability to complete a task without colliding
with a human [20-22]. It is defined as:

Nsuccess

Ruccess = N (2.11)

where Ny, qcess denotes the number of successful trials in which the robot did not
hit a human, and N represents the total number of trials.

e The hazard ratio quantifies the proportion of time arobot spends within a hazardous
proximity of humans [22]. It is defined as:

1 N Tz hazard

Rhazard = N TiSOCial

i=l1

(2.12)

where N is the number of humans present, Tih‘”“’d is the duration for which the
distance between the robot and the i -th human is less than a predefined safe distance
(e.g., 1 m), and Ti"’"i"’ is the duration for which the distance between the robot
and the i-th human is less than a predefined social distance (e.g., 1.5 m).

e The deceleration ratio quantifies a robot’s ability to reduce its speed when
approaching a human [25]. It is defined as:

1

1
Rgeceleration = — (213)
N ; Vinax

<

where N is the number of speed measurements taken when the distance between the
robot and the human is less than a predefined social distance Dyqcia1, V; 1S the robot’s
instantaneous speed at the i-th measurement, and Vi, is the robot’s maximum
speed. Because different robots or methods may employ varying maximum speeds,
comparisons using this metric can be ambiguous, making it difficult to isolate the
impact of hardware versus algorithmic performance. Therefore, it is recommended
to maintain a consistent maximum speed across different methods when using
Rieceleration for benchmarking.

Human-centric metrics

Essentially, RCM alone cannot fully account for the degree of sociality of robot nav-
igation because they do not reflect humans’ subjective feelings about robot behavior.
To obtain people’s opinions and quantify them, a questionnaire' based on the Robotic
Social Attributes Scale (RoSAS) [26] can be used. RoSAS has been widely used to

Uhttps://forms.gle/4Lr4KP1E81SJFAETY.
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Table 2.1 The robotic social attributes scale (RoSAS)

Warmth Competence Discomfort
Happy Capable Scary
Feeling Responsive Strange
Social Interactive Awkward
Organic Reliable Dangerous
Compassionate Competent Awful
Emotional Knowledgeable Aggressive

assess human acceptance of robots in close-proximity HRI, such as object handover
between humans and robots [27]. It was subsequently used to evaluate the social-
ity of robot navigation methods [13], since human-aware robot navigation can be
viewed as a contactless HRI problem. The RoSAS questionnaire provides a psycho-
logically validated and standardized evaluation scale for the quality of HRI. These
questions are classified into three categories corresponding to three psychological
factors including “warmth”, “competence” and “discomfort”, as shown in Table 2.1.
Furthermore, a counterpart (dual metric) to Ryme Within the realm of HCM can
be defined: the human extra time ratio. This metric aims to quantify how human task
completion time is affected by the presence of robots exhibiting varying degrees of
social behavior. It is objectively calculable and defined as:
T/
Rl = T (2.14)
robot
where 7’ and T, ; , represent the time a human takes to complete a task in the absence
and presence of robots, respectively.

2.2.3 Experimental Design

Scientific and reasonable experimental design is the foundation of benchmarking.
Experimental design and its associated terminology vary across disciplines. Based
on the author’s research experience [4, 13, 28-31], it is recommended to consider
the following aspects when designing robotic experiments:

e Experimental environment: Specify whether experiments are conducted in simu-
lation, using a dataset, or with a physical robot.

e Experimental subject: Define the focus of the experiment: a specific module, algo-
rithm, or the entire system.

e Experimental scope: Characterize the scope as end-to-end (macroscopic, akin to
black-box testing in software engineering) or structured (microscopic, akin to
white-box testing).
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e Experimental parameters: For each parameter, provide the specific values or range
of values used in the experiments. Examples are detailed in Sect. 2.2.1.

e Parameter vectors: Define a parameter vector as the set of parameters and their
corresponding values for a single experimental run. Describe how these vectors
are generated (e.g., explicit listing or computational method).

e Experiment repetitions: Specify the number of repetitions for each experimen-
tal configuration. Justify the choice of repetitions, explaining how it addresses
repeatability and enables statistical analysis, particularly for non-deterministic
experiments common in mobile robotics due to factors such as sensor noise or
probabilistic algorithms.

e Experiment termination criteria: Define the conditions under which an experimen-
tal run is terminated, whether upon successful completion or due to unexpected
behavior.

e Data acquisition plan: Describe the data collection strategy, including when and
how data are acquired and stored. For example, robot data might be logged con-
tinuously at a defined frequency, while human feedback might be collected via
post-experiment questionnaires.

e Data acquisition (Measurements): Specify the types of data collected for each
experimental run and the corresponding acquisition methods. Data collection may
be continuous (at a predetermined frequency) or discrete (triggered by specific
events or conditions).

e Evaluation metrics: Define the metrics used to evaluate performance based on the
collected data. See Sect. 2.2.2 for further details.

e Data analysis and results presentation: Describe the data processing procedures
used to analyze the collected data (e.g., to understand data structure and distribu-
tion) and present the experimental results. This may include visualizations (e.g.,
precision-recall curves) and comparative rankings (e.g., as in the KITTI benchmark
suite).

To illustrate the aforementioned arguments, an example experimental design for
a multi-robot exploration task is presented, as shown in Table 2.2. This design, orig-
inally published in [4], is presented here in an expanded form. Creating such a table
for each benchmark, detailing all aspects of the experiment, facilitates both repro-
ducibility and replicability. Reproducibility focuses on the consistency of experi-
mental conclusions. For instance, if experimenter B conducts the experiment in a
different environment and arrives at the same conclusion as experimenter A (e.g.,
“Algorithm I is faster than Algorithm II”’), the experiment is considered reproducible.
Replicability, conversely, emphasizes the consistency of experimental results, that is,
obtaining nearly identical results upon repetition (e.g., “Algorithm I is 100 seconds
faster than Algorithm II””). Achieving replicability is often more challenging than
reproducibility, as it typically requires identical benchmarking platforms, including
hardware and software configurations.
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Table 2.2 Example experimental design for multi-robot exploration

Experimental environment Simulator: MORSE [32]

Experimental subject Map merging algorithm: probabilistic
merging [14]

Experimental scope End-to-end and structured
Robot: Pioneer 3-DX,

Experimental parameters Number of robots: [3, 33], - - -

Parameter vectors All possible combinations

Experiment repetitions 5 times

Experiment termination criteria 99% of the area is explored, the experiment run
>10 mins, - - -

Data acquisition plan The robot collects data at runtime and stores it
locally

Data acquisition Area explored per simulation step, exploration
time when a stop condition is triggered, - - -

Evaluation metrics Exploration time, map quality [34], - - -

Data analysis and results presentation Analyze raw data statistically, visualize results

using line graphs, - - -

2.3 Testbed Construction

Benchmarking requires a platform, which can be implemented using a real robot,
a simulator, a dataset, or a combination thereof. As an example, this section
details a simulation testbed developed for benchmarking multi-robot exploration
tasks [4]. Methodologically, the testbed employs the physics engine-based simulator
MORSE [32] as the simulation front end, the Robot Operating System (ROS) [35]
middleware as the robot software interface, a computer cluster for large-scale simu-
lations (back end), and a monitoring system to oversee experiment execution. From
an engineering standpoint, the testbed fully automates the benchmarking process,
generating evaluation results without human intervention. The testbed’s architecture
is illustrated in Fig. 2.3.

The MORSE simulator and the experiment monitor are deployed as independent
ROS nodes on a workstation equipped with an 8-core processor, 8 GB of RAM,
a high-performance graphics card, and a Gigabit Ethernet adapter. The robot con-
trollers are deployed on the computer cluster, with each controller implemented as
a set of ROS nodes. To ensure fidelity between simulation and real-world experi-
ments, the same controller software used on the physical robot is employed in the
simulation. The computer cluster comprises 70 computing nodes, providing high-
performance distributed computing resources to support real-time simulation of large
robot teams. Each node is equipped with 8—12 processors and 16-48 GB of RAM.
Wired networks facilitate communication within the cluster and between the cluster
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Fig. 2.3 Architecture of the developed multi-robot simulation testbed

and the workstation. Inter-node communication within the ROS framework is based
on the publish-subscribe model.
Communication within the testbed is threefold:

e Simulator-controller communication: The simulator transmits simulated sensor
data (e.g., laser rangefinder and wheel encoder data) to the robot controllers, which,
in turn, send motion control commands to the simulator.

e Monitor-controller communication: The monitor receives performance metrics
from the robot controllers, such as explored map coverage and distance traveled.

e Inter-robot communication: Communication between robot controllers depends
on the specific coordination strategy employed, and may include exchanging map
and localization information.

In general, the data volume and network bandwidth requirements scale proportionally
with the number of simulated robots.

2.4 Dataset Building

As another example of a benchmarking platform, this section introduces the EU long-
term dataset [9], designed for evaluating robot perception and learning methods. This
dataset was acquired using an embodied perception system specifically developed
for autonomous driving. A key design principle of this system is its multimodal
approach to perception, contrasting with Tesla’s current unimodal (camera-based)
approach. Detailed characteristics and analyses of the dataset are available on its
website. The following provides a detailed description of the dataset’s construction
from both hardware and software perspectives.
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2.4.1 Hardware Platform

The hardware platform is the UTBM RoboCar [9], which features a more diverse
sensor suite compared to platforms used in previous works, such as the KITTI
AnnieWAY [2] and Oxford RobotCar [36]. This enhanced diversity includes the
integration of more and different sensors. Furthermore, a key design principle for
the selection and installation of exteroceptive sensors was to maximize perceptual
coverage and ensure sensor redundancy (i.e., overlapping sensor field of view (FoV),
as illustrated in Fig. 2.4).

The sensor types and their mounting positions on the vehicle are visualized in
Fig. 2.5. Specifically:

e Stereo cameras: Two stereo camera pairs, a forward-facing Bumblebee XB3 and a
rear-facing Bumblebee?2, are mounted on the front and rear of the roof, respectively.
Both cameras utilize Charge-Coupled Device (CCD) sensors operating in global
shutter mode. This offers advantages over rolling shutter cameras, particularly
at high vehicle speeds. Global shutter mode exposes all pixels in the captured

radar
ibeo LUX 4L lidar
Velodyne 3D lidar Velodyne 3D lidar
SICK 2D lidar
. stereo .
fisheye camera fisheye
camera camera
stereo
camera

Fig. 2.4 Schematic diagram of the sensing areas of various sensors of the UTBM RoboCar
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Fig. 2.5 The sensors used and their mounting positions

image simultaneously, whereas rolling shutter mode exposes pixels sequentially,
typically in a wave-like pattern.

e 3D lidars: Two Velodyne HDL-32E lidars are mounted side-by-side on the front of
the roof. Each lidar features 32 scanning channels, a 360-degree horizontal and 40-
degree vertical FoV, and a measurement range of up to 100 m. When multiple lidars
are deployed in close proximity, as on the UTBM RoboCar, mutual interference
can occur due to reflections. To mitigate this, the lidars’ built-in phase-locking
capabilities are employed to manage laser emission overlap, and post-processing
techniques are applied to eliminate data shadows.

e Fisheye cameras: Two Pixelink PL-B742F industrial cameras, each equipped
with a Fujinon FE185C086HA-1 fisheye lens, are mounted on either side of the
mid-roof, facing laterally. These cameras utilize Complementary Metal-Oxide-
Semiconductor (CMOS) global shutter sensors to capture high-speed motion with-
out distortion. The fisheye lenses provide an ultra-wide 185-degree FoV. This con-
figuration enhances lateral environmental perception and provides complementary
color and texture information to the Velodyne lidars.
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e 2.5D Lidar: An ibeo LUX 4L lidar is integrated into the front bumper near the
vehicle’s y-axis, providing an 85-degree (four-layer mode) or 110-degree (two-
layer mode) horizontal FoV and a measurement range of up to 200 m. This lidar
is paired with a radar sensor, forming a crucial safety system for the vehicle and
other road users.

e Radar: A Continental ARS 308 radar is mounted adjacent to the ibeo lidar. While
radar offers lower angular accuracy compared to lidar, it provides robust detection
of moving objects due to the Doppler effect and is less susceptible to adverse
weather conditions. Some radar systems can even detect objects behind obsta-
cles using reflections [37]. Current research is increasingly focused on 4D radar,
which provides object height information in addition to traditional radar measure-
ments [38]. On the UTBM RoboCar, radar and lidar data are cross-referenced for
enhanced object detection and tracking.

e Laser Rangefinder: A SICK LMS100-10000 laser rangefinder is mounted on one
side of the front bumper. This 2D lidar provides a 270-degree FoV and, due to its
slight downward tilt, acquires data about the road surface, including markings and
boundaries. The combined use of the ibeo and the SICK lidars is also recommended
by the industry, with the former for object detection (i.e. dynamics) and the latter
for road understanding (i.e. statics).

e GNSS Receiver: A Magellan ProFlex 500 GNSS receiver placed inside the vehi-
cle, with two antennas mounted on the roof, is used for localization. One antenna
is mounted along the vehicle’s z-axis, perpendicular to the rear axle, for satellite
signal reception, while the other is positioned at the rear of the roof for synchro-
nization with a Real-Time Kinematic (RTK) base station. RTK correction enhances
GNSS positioning accuracy from meter-level to centimeter-level.

e IMU: An Xsens MTi-28A53G25 Inertial Measurement Unit (IMU) is installed
inside the vehicle to measure linear acceleration, angular velocity, and absolute
orientation. IMUs are often used in conjunction with GNSS receivers.

For sensor data acquisition and processing, the ibeo lidar and radar, critical for
driving safety, are connected to a dedicated control unit. This unit interfaces with the
vehicle’s Controller Area Network (CAN) bus to enable real-time vehicle control,
including steering, acceleration, and braking. The two Velodyne lidars (via Ethernet)
and the GNSS/IMU (via USB 2.0) are connected to an embedded computing unit,
which performs core autonomous driving functions such as SLAM, point cloud
clustering, sensor fusion, vehicle localization, and path planning. All cameras are
connected via IEEE 1394 to a gaming laptop, providing the necessary computational
resources, particularly GPU capacity, for vision algorithms. All sensors are connected
via a wired network to a Dell Precision Tower 3620 workstation, which serves as the
data acquisition and logging platform for dataset generation. To power the embodied
perception platform for approximately one hour, two 60 Ah batteries were added,
given the vehicle’s diesel engine.
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Fig. 2.6 Architecture diagram of the ROS-based software for data collection. To facilitate repro-
ducibility, the diagram depicts the ROS package name for each sensor driver rather than the specific
ROS node names. In practice, the ROS master communicates with the nodes provided by these
packages

2.4.2 Software Architecture

The software that data collection relies on is entirely based on ROS. Its architecture
and the data publication frequency of each sensor are illustrated in Fig. 2.6. All ROS
nodes run locally on the Dell workstation to ensure software-level data synchroniza-
tion via ROS timestamps. No data delays were observed during the acquisition pro-
cess, primarily because the system records only raw data, deferring post-processing
to offline playback. Data is stored in the “rosbag” format.

2.4.3 Sensor Calibration

All cameras and lidars were intrinsically calibrated, and the corresponding calibra-
tion files are included with the dataset. Camera calibration was performed using the
ROS “camera_calibration” package with a chessboard pattern. The lidars were cal-
ibrated using factory-provided intrinsic parameters. Extrinsic lidar calibration was
performed by minimizing the voxel-wise L, distance between point clouds from
different sensors, acquired by driving the vehicle in a structured environment with
multiple landmarks. To calibrate the transformation between the stereo cameras and
the 3D lidars, the vehicle was positioned to face building corners, and the resulting
point clouds were manually aligned on three planar surfaces (i.e., two walls and the
ground). The aligned sensor data is shown in Fig. 2.7, demonstrating good alignment
between the lidar and stereo camera point clouds.
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Fig.2.7 A ROS Rviz screenshot of the data collected with calibrated sensors. The UTBM RoboCar
is in the centre of the image with a truck in front. The red ring points come from the Velodyne lidars,
the white points from the SICK lidar, and the colored points from the ibeo lidar. The point clouds
in front of and behind the vehicle are from the two Bumblebe stereo cameras

2.4.4 Comparison Between Different Datasets

To contextualize the EU long-term dataset, a comparison with other contempo-
rary open datasets is presented in Table 2.3. Notably, KITTI [2] is a pioneering
dataset for autonomous driving research, providing stereoscopic color images, 3D
lidar point clouds, and vehicle GPS coordinates. Two key factors contributed to its
success. First, it offers extensive high-quality manual annotations, including cate-
gories such as “Car”, “Van”, “Truck”, “Pedestrian”, “Person (sitting)”, “Cyclist”,
“Tram”, and “Misc” (e.g., trailers, Segways), with each label further classified by
difficulty: “easy”, “moderate”, or “hard”. Second, it features an online benchmark
ranking for various tasks, including stereo vision, optical flow, scene flow, visual
odometry, object detection and tracking, road/lane detection, and semantic segmen-
tation. Furthermore, several extensions of KITTTI exist, such as KITTI-360 [39] and
SemanticKITTI [33].

KITTT also presents certain limitations. For instance, the dataset employs one-to-
one frame synchronization to handle sensor data with varying acquisition frequen-
cies. Moreover, point cloud annotations are derived from image label projections,
which may not accurately reflect the true geometric properties of the point cloud [44].
Additionally, KITTI predominantly features conventional scenes with low dynamic
complexity and favorable weather and lighting conditions. These scenes do not fully
represent the challenges encountered in real-life driving scenarios. Furthermore, the
object detection and tracking benchmarks within the dataset exhibit temporal discon-
tinuities and lack positioning information about the vehicle itself. In summary, while
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KITTTI is a valuable resource for computer vision-centric approaches to autonomous
driving, it does not fully encompass the complexities of the autonomous driving task
itself.

Another noteworthy dataset is Waymo [3], launched in 2019. Developed with
significant industry resources, Waymo represents a substantial advancement in
autonomous driving data. Organized by scene, each scene comprises continuous and
annotated multi-modal sensor data, including real-time vehicle localization, facilitat-
ing a more comprehensive understanding of the driving environment. The continuous
nature of the data is particularly beneficial for research in areas such as online learn-
ing, domain adaptation, object tracking, and trajectory prediction. To date, Waymo
has released 798 scenes for model training and 202 scenes for model validation, each
encompassing 20 seconds of continuous driving time. Data was collected in diverse
urban and suburban locations, covering a range of lighting and weather conditions,
including day, night, dawn, dusk, sunshine, and rain. Hardware-level synchronization
ensures precise alignment between sensor data streams. Data annotation covers four
object classes including cars, pedestrians, cyclists, and signs. However, the classifi-
cation of motorcycles and motorcyclists as vehicles and scooter riders as pedestrians
suggests a need for more granular classification in future releases.

2.5 Discussions

This chapter presented a study on benchmarking methodologies for mobile robotics.
It addressed the crucial question of how to conduct benchmarking effectively by
defining three key aspects of the process: parameters, metrics, and experimental
design. Subsequently, two concrete examples—the development of a testbed and the
construction of a dataset—illustrated potential benchmarking platforms. However,
benchmarking has faced evolving challenges, four of which are discussed below.

2.5.1 Ranking-Driven Overfitting

As discussed in the introduction, benchmarking, particularly those benchmarks with
public rankings, can be a double-edged sword. While offering numerous benefits,
they can also induce overfitting to a specific dataset or evaluation metric. A practical
consequence is that methods reporting superior performance on one benchmark suite
may not generalize well to others. For example, point cloud annotations in the KITTI
dataset (i.e., 3D bounding boxes of various road users) are derived from 2D image
projections. Annotators manually label images, and the corresponding point clouds
are then automatically annotated using a calibration between the two modalities.
Conversely, point cloud annotation in the L-CAS 3D Point Cloud People Dataset is
performed directly on the point clouds. This difference in annotation methodology
results in KITTI’s 3D bounding boxes including object size estimates, while L-CAS
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bounding boxes do not. Consequently, when evaluating point cloud clustering or
object detection methods on KITTI, object size estimation can improve performance.
However, when evaluating on L-CAS, this additional step can have a detrimental
effect. This is just one example of potential overfitting, a more common approach is
to fine-tune models based on dataset characteristics.

2.5.2 Benchmarking Al with AI

Using Al to evaluate Al is along-standing concept, echoing the Turing test’s principle
of using inter-agent interaction for evaluation. As an evaluator, a symbolic approach
offers logical power but struggles to establish a one-to-one mapping of object prop-
erties and effectively handle underlying representations. With the advancement of
modern Al, particularly Deep Neural Network (DNN), connectionism has achieved
significant breakthroughs, especially in addressing problems that challenged sym-
bolic methods. However, a recognized limitation of connectionism is its lack of inter-
pretability. Symbolism and connectionism can be analogously compared to human
rational and perceptual thinking, respectively. The former emphasizes analysis and
reasoning, while the latter involves emotion and intuition. A promising research
direction lies therefore in combining these two paradigms to develop more robust
and capable Al systems.

This chapter’s content incorporated the concept of benchmarking AI with Al The
testbed described in Sect. 2.3, grounded in symbolic reasoning, facilitated compara-
tive analysis by addressing questions such as “In what aspects is method A superior
to method B?” or “Under what conditions is method A (or method B) more appro-
priate?” The work presented in Sect. 2.2.2.3 further explored this concept by investi-
gating the correlation between RCM and HCM to evaluate the social acceptability of
robot navigation—indirectly considering human feelings—using only RCM when
HCM is unavailable. This represented an example of using Al to evaluate HRI,
employing a statistical approach. Future work could involve developing dependency
functions using neural networks, although this would necessitate the acquisition of
additional training data.

2.5.3 Benchmarking Ethics

In principle, benchmarking should adhere to established ethical principles, including
the avoidance of bias, promotion of transparency, and minimization of harm. The
research practices relevant to this book primarily involve experiments with human
participants. Considering socially-compliant robot navigation as an example, such
experiments must adhere to the following ethical considerations:
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e Safety: Benchmarking must prioritize the safety of human participants. This entails
requirements for the mobile robot’s obstacle detection and avoidance capabilities,
as well as rapid response times in emergency situations. Furthermore, experimen-
tal designs should incorporate protective measures for participant safety, such as
emergency braking systems.

e Fairness: Benchmarking should ensure equitable treatment of all participants,
regardless of race, gender, socioeconomic status, or other protected attributes.
This involves verifying that the algorithms deployed on the robots do not exhibit
bias in their decision-making processes and ensuring fair participant recruitment
and experimental design practices.

e Transparency: The benchmarking process should be transparent and readily under-
standable to participants. This requires providing participants with detailed expla-
nations of the experimental procedures prior to commencement, including infor-
mation regarding the collection, storage, and use of personal information and
experimental data, as well as explanations of the robot’s behavior and safety pro-
tocols for participant self-protection.

e Accountability: Clear lines of responsibility for the conduct of benchmarking activ-
ities must be established.

2.5.4 Data Privacy

Mobile robotics, particularly in domains such as autonomous vehicles and delivery
drones, often entails the collection of substantial amounts of data. This data may
include sensor readings, location information, and potentially personally identifi-
able information (PII) if the robots interact with people or their environments. Data
privacy is therefore a critical concern in benchmarking, aiming to protect sensitive
information while preserving the integrity of the benchmarking process. Reconciling
these two objectives, however, remains challenging. For instance, in the EU long-
term dataset [9], while anonymization or pseudonymization techniques can enhance
privacy, they may also introduce noise or distortions that compromise the accuracy
and reliability of benchmarking results. Furthermore, obtaining informed consent
from all individuals potentially affected by benchmarking in public settings is often
impractical and resource-intensive [13]. Moreover, even with robust security mea-
sures in place, the risk of data breaches or unauthorized access persists, potentially
compromising both privacy and benchmarking integrity. Balancing the pursuit of
accurate benchmarking with the need to safeguard individual privacy presents ethical
dilemmas, especially when dealing with sensitive data. Consequently, recommended
practices include incorporating privacy considerations into the benchmarking pro-
cess from the outset, exploring advanced privacy-preserving techniques such as dif-
ferential privacy or federated learning to minimize data exposure, and consulting
ethics review boards to ensure adherence to ethical principles in all benchmarking
activities [19].
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Chapter 3 ®)
Robot Perception Grest o

Abstract This chapter presents a study on robot perception. It begins by establishing
the research motivation: enabling large-scale human detection and tracking in public
(non-domestic) environments using embodied sensors and onboard computing. Sub-
sequently, it introduces contemporary 3D lidar technology as an embodied sensor,
covering its fundamental operating principles and relevant applications in mobile
robotics. The chapter then details the “adaptive clustering” method developed by the
author, highlighting its advantages and limitations through a performance compari-
son with other established methods. Following this, it describes several hand-crafted
features extracted from point clouds, proven effective for human model training.
Finally, it presents a multi-target tracker optimized for point cloud data.

Keywords 3D lidar - Point clouds * Adaptive clustering - Object detection -
Multi-target tracking

3.1 Introduction

Robot perception aims to equip robots with the ability to perceive the external
world and their own state, analogous to human perception. This capability relies
on a variety of sensors. The author’s research has focused on the use of non-visual
(active) sensors, including sonar, lidar, and radar, driven by four key motivations.
First, distance information of objects within the environment is crucial for robot
navigation. Second, effective perception is essential for robots operating in large-
scale, highly dynamic environments. Third, long-term robot autonomy necessitates
robust perception. Finally, robots deployed outdoors must be able to operate reliably
in diverse weather conditions. This chapter presents work on embodied perception
using 3D lidar. This research began in late 2015 within the framework of the Euro-
pean FLOBOT project, which involved integrating a 3D lidar onto an indoor cleaning
robot, innovatively employing it for both human perception and robot navigation.
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3.2 3D Lidar

Lidar, an acronym for “Light Detection And Ranging”, is a technology that uses
pulsed light, typically from a laser, to measure distances. Historically, research on
how mobile robots perceive their external world has progressed through several
stages, evolving from sonar and planar laser rangefinders to visual sensors and,
more recently, 3D lidar and 4D millimeter-wave radar. Among them, the planar laser
rangefinder played a crucial role in advancing Simultaneous Localization And Map-
ping (SLAM), one of the fontamental problems in mobile robotics, by providing
accurate geometric representations of environments [53]. Over the past decade, 3D
lidar, which shares the same ranging principle as planar laser rangefinders, has gar-
nered increasing attention in both academia and industry. This trend is evidenced by
the growing number of relevant publications (see Fig.3.1), capital investment, and
industry participants (see Fig.3.2).

Compared with planar laser rangefinders, 3D lidar not only provides an additional
spatial dimension of information by increasing the number of scanning layers, but
also enables wider and longer distance measurements. For instance, the commercially
available Robosense Ruby Plus offers a 360-degree horizontal and 40-degree vertical
FoV, with a measurement range of up to 250 m. This enhanced sensing capability
allows researchers to investigate more complex problems in larger and more intricate
environments, such as large-scale human detection and tracking in public spaces like
airports, supermarkets, and cafeterias (see Fig.3.3) [56-58].

Fig. 3.1 Number of publications per year related to “3D lidar robot” indexed in Web of Science,
as of 2024
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Fig. 3.2 Number of new 3D lidar companies entering the market each year until 2019, based on
IDTechEX statistics

Fig. 3.3 Left: A robot equipped with a 3D lidar (indicated by the arrow) deployed in a university
canteen for human detection and tracking. Right: Point cloud data generated by the 3D lidar

3.2.1 Ranging Principle

This book focuses on 3D lidar based on the Time-of-Flight (ToF) principle, illustrated
in Fig. 3.4 [68]. Specifically, a laser transmitter emits pulsed laser light, typically with
a wavelength between 905 and 1550 nm, in a specific direction. Upon encountering
an obstacle, the laser beam is reflected or scattered, depending on the object’s surface
material. A laser detector then receives the returned signal and determines the distance
between the sensor and the object by measuring the time of flight. This measurement
mechanism is expressed as:
c- At
2n

3.1)

r =
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Fig. 3.4 Schematic of the
ToF lidar ranging principle

where ¢ represents the speed of light (a fundamental physical constant), n denotes the
refractive index of the propagation medium, and At is the time difference between
the transmission and reception of the laser pulse.

However, laser beam reception is not as straightforward as its emission. The
received laser power is governed by the lidar equation, which can be expressed
as [39]:

R
Pr = C% exp —Zfa(r)dr (3.2)

0

where: Py is the received laser power at distance R; C is a constant incorporating
factors such as the speed of light, laser transmit power, optical aperture area of
the detector, and overall system efficiency; 8 is the target reflectivity (reflection
efficiency of the object surface); « is the extinction coefficient of the lidar signal. As
this equation demonstrates, sophisticated signal processing techniques are required
to detect the true return signal in the presence of low signal-to-noise ratios.

3.2.2 Scanning Architectures

Commercially available 3D ToF lidars can be categorized into three types based on
their scanning architectures (see Fig. 3.5): mechanical, semi-solid-state (also known
as hybrid solid-state), and solid-state. Mechanical lidars employ multiple vertically
arranged laser beams and a motor to rotate the entire optoelectronic assembly 360°C.
Their advantages include mature technology and high measurement accuracy. How-
ever, they are characterized by larger size and higher cost. Semi-solid-state lidars
feature a fixed transceiver module and a mechanically moving scanner. Two main-
stream technical solutions exist including rotating mirror-based and Micro-Electro-
Mechanical Systems (MEMS)-based. Compared to mechanical lidars, semi-solid-
state lidars have fewer moving parts, resulting in greater stability and lower manu-
facturing costs, but typically offer a narrower FoV. Compared to solid-state lidars,
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Fig. 3.5 Three different types of ToF lidar: mechanical (left), semi-solid-state (middle), and solid-
state (right)

semi-solid-state technology is relatively mature and thus more readily commercial-
ized. Solid-state lidars contain no mechanical moving components. Current main-
stream technical solutions include Flash lidar and Optical Phased Array (OPA)-based
lidar. Solid-state lidars offer advantages such as smaller size and lower cost, but cur-
rently exhibit limitations in measurement accuracy and FoV, and require further
technological maturation.

For prevalent mechanical lidars, increasing the number of scanning layers, and
thus vertical resolution, necessitates stacking laser transceiver modules, leading to
increased cost and manufacturing complexity. Consequently, while mechanical lidars
remain widely adopted due to their high technological maturity and 360-degree
horizontal FoV, industry and academia are increasingly investing in MEMS lidar,
particularly for autonomous driving applications. However, the small reflector and
receiver aperture of MEMS lidar limit its detection range, and further iterations of
both the transceiver and scanning modules are required. Flash lidar illuminates an
area with a single, diffused laser pulse. Due to human eye safety regulations on laser
emission power, flash lidar struggles to achieve long-range measurements and is
therefore primarily employed in mid-range or indoor applications.

In addition to the aforementioned ToF-based lidars, Frequency Modulated Con-
tinuous Wave (FMCW) lidar represents a promising alternative. Unlike ToF lidar,
FMCW lidar transmits and receives continuous laser beams, mixes the returned
light with a local oscillator signal, and employs heterodyne detection to measure the
frequency difference between the transmitted and received signals. This frequency
difference is then used to calculate the target distance. In principle, FMCW-based
measurements offer greater stability and reliability compared to ToF-based mea-
surements. However, FMCW technology is still undergoing active development and
refinement. For a detailed comparison of various lidar technologies, the reader is
referred to [25].

3.2.3 Physical Properties

A key advantage of lidar is its rapid data acquisition and high-precision range mea-
surement capabilities. Among various types, mechanical lidar, commonly employed
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Table 3.1 A comparison of the performance of commonly used exteroceptive sensors

Sensor Lidar Radar Sonar Camera
Detection range | x * * * %k * *ok
Ranging accuracy |  x x *k *ok *
Resolution *k * * * *
Horizontal FoV | % x x *ook * *k
Vertical FoV *ok * * *ok
Color information | xx * * * kK
Lighting * * K * x % * Kk % *
robustness

Weather *k * * * * * * *
resistance

in mobile robotics, offers 360-degree horizontal scanning and measurement ranges
extending to hundreds of meters. Furthermore, as an active sensor, lidar exhibits
robustness to varying lighting conditions, contributing to long-term robot auton-
omy. However, lidar data is typically represented as sparse point clouds that become
sparser with increasing distance, and lacks readily interpretable features such as
color and texture, posing challenges for object recognition. From another perspec-
tive, this inherent difficulty in object and human identification can be viewed as a
positive attribute for privacy protection. Another limitation of lidar is its suscepti-
bility to adverse weather conditions, primarily due to atmospheric water droplets.
These droplets both absorb and scatter near-infrared laser light, increasing the extinc-
tion coefficient o (cf. Eq.3.2). Additionally, wet surfaces reduce object reflectivity
B [22]. The combined effect of these factors diminishes the received laser power,
hindering object detection. Moreover, raindrops and snowflakes near the laser trans-
mitter introduce significant measurement noise [8]. A performance comparison of
various exteroceptive sensors, to better understand the physical properties of lidar,
is provided in Table3.1.

3.2.4 Data Representation

Lidar’s measurements of its surroundings can be represented by a set of points in a
three-dimensional coordinate space:

P={pi|lpi=@,y.z)eRi=1...1I} 3.3)

where each point p; corresponds to a processed laser beam reflection, and / denotes
the total number of points. By convention, this set of points is called a point cloud.
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Depending on the characteristics of the hardware, additional attributes such as
intensity and laser ring number may be associated with each point.

A widely used point cloud processing library in robotics is the Point Cloud Library
(PCL) [43]. This open-source C++ library leverages traditional computer vision
algorithms (excluding Deep Neural Network (DNN)) for tasks like feature estimation,
surface reconstruction, 3D registration, model fitting, and segmentation. Notably,
the Point Cloud Data (PCD) file format' serves as the native file format for PCL,
facilitating efficient storage and exchange of point cloud data.

Another method for representing and processing lidar data leverages the Robot
Operating System (ROS). ROS has emerged as the de facto standard platform for
robot software development, and its influence extends to the realm of autonomous
driving software, with a growing number of researchers and companies adopting
it as the foundation. Within the ROS framework, lidar data are commonly repre-
sented using the PointCloud2 data structure.” This structure facilitates the storage
and sharing of lidar data through packaging into “rosbags” [56, 61]. Notably, the
close relationship between ROS and PCL enables seamless handover of point cloud
data processing tasks to PCL. Beyond these two prominent representations, other for-
mats are also commonly used, including binary files (e.g., .bin) employed in datasets
like KITTTI [15], Oxford RobotCar [31], KAIST [17], and CADC [37], and XML
files exemplified by nuScenes [9].

3.2.5 Industrial Applications

The widespread adoption of 3D lidar can be traced back to the success of Stanford
University’s Junior robot car [32] in the 2007 DARPA Grand Challenge, where a Velo-
dyne’s 64-layer 3D lidar served as the primary sensor for obstacle detection, including
pedestrians, signposts, and other vehicles. Junior’s success directly influenced and
accelerated the development and application of 3D lidar in industry, particularly
within the autonomous driving sector [9, 15, 17, 24, 25, 31, 37, 51, 61, 63, 66, 67].
Despite Tesla’s reluctance to acknowledge its widespread use, 3D lidar has become
the de facto standard for self-driving vehicles [1]. Beyond obstacle detection, 3D
lidar is also employed for creating high-definition maps and performing localization
based on these maps. These high-resolution maps incorporate detailed road informa-
tion, such as lanes, traffic signs, and traffic rules. To achieve more comprehensive
environmental measurements and minimize blind spots, autonomous vehicles often
utilize multiple lidars [17, 49, 51, 61]. However, just as relying solely on vision-
based solutions is insufficient, autonomous driving based solely on 3D lidar presents
limitations. Consequently, multi-modal perception remains the dominant approach
(cf. Sect. 2.4).

Uhttp://pointclouds.org/documentation/tutorials/pcd_file_format.php.
2 http://docs.ros.org/melodic/api/sensor_msgs/html/msg/PointCloud2.html.
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Fig. 3.6 Two types of service robots equipped with 3D lidar (pointed out by the red arrow)

Beyond autonomous driving, 3D lidar has found increasing application in service
robotics for tasks such as professional cleaning [58], warehouse logistics [28], last-
mile delivery [50], inspection [54], exploration [41], search and rescue [41], and
agriculture [14]. Typically mounted on the robot’s top to minimize occlusion, it
facilitates tasks such as mapping, localization, object detection and tracking, semantic
segmentation, and scene understanding. A concrete example is shown on the left side
of Fig.3.6. Within the EU-funded FLOBOT project, a robotic scrubber-dryer was
developed for use in public spaces such as supermarkets, airports, and hospitals [58].
This robot employs a multi-modal embodied perception system, in which a 3D lidar is
used for large-scale long-range human detection and tracking to ensure human safety
when the robot is operating, and is also used for learning the changing patterns of the
environment to optimize cleaning task planning. Another concrete example, depicted
on the right side of Fig. 3.6, is the robotic forklift developed for warehouse logistics
within the EU-funded ILIAD project [28]. This robot also utilizes a multi-modal
embodied perception system, incorporating a 3D lidar for online mapping while
eliminating human detection in the environment. A 2D obstacle grid map is then
extracted from the 3D map for robot navigation and motion planning.

Furthermore, in the face of the last global public health crisis COVID-19, 3D lidar
demonstrated encouraging results and broad application prospects. Initially, its most
direct application involved human detection and tracking, enabling effective monitor-
ing of social distancing while respecting individual privacy [45]. Subsequent research
demonstrated the capability to detect mask usage [30]. Moreover, when integrated
with other quarantine equipments, such as thermal sensors, 3D lidar can facilitate
the detection and tracking of infected individuals and their contacts, enabling rapid
and timely deployment of appropriate epidemic prevention measures. Last but not
least, the use of 3D lidar in these applications is flexible: it can be mounted on mobile
robots or deployed as a stationary sensor within the environment.
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3.3 Object Detection in Point Clouds

So far, the main methods of object detection based on 3D lidar can be roughly
divided into two categories including pipeline and end-to-end. The former means
that different functional blocks (often termed modules) are interconnected into a
pipeline. Therefore, the point cloud is first input into the pipeline, then processed by
each module in sequence, and finally the pipeline outputs the detection results. For
instance, the method to be introduced in this section involves initially segmenting
the point cloud into non-overlapping subsets, ideally with each subset representing
a distinct object. Subsequently, each subset is assigned a category label based on a
specific model. This model can be either top-down, such as those based on machine
learning [20, 56, 57, 59], or bottom-up, such as those based on object motion [12, 47].

End-to-end, on the other hand, is a modern approach closely related to deep learn-
ing methods that allows models to recognize objects directly from point clouds [21,
73]. Although this type of method has achieved results that break through the per-
formance bottleneck of traditional ones in certain detection tasks, the current lack of
model interpretability and the inability to domain shift make pipeline-based methods
still irreplaceable. As evidence, rule-based clustering methods capable of detecting
objectless objects are still widely used in the field of mobile robotics [7, 18, 43, 56,
71]. This section focuses on pipeline-based object detection, but first presents some
representative works on end-to-end methods in the context of mobile robotics.

Currently, deploying end-to-end DNN-based methods onto robots still requires
consideration of the computing capabilities of edge devices to a certain extent. An
effective way to reduce the amount of computation is to convert 3D point clouds into
2D data. For example, PIXOR [62] first converts the 3D point cloud into a Bird’s
Eye View (BEV), while the latter is a 2D planar representation encoding each point
in the former based on two channels including height and intensity, and then uses
the structurally fine-tuned RetinaNet [26] on the BEV for object detection. Another
example is Complex-YOLO [48], which first converts a 3D point cloud into a 2D
BEV with height, intensity and density as channels (similar to how RGB images are
encoded), then use YOLO [40] on the latter for object detection.

Another approach to enhance computational efficiency is to voxelize the 3D point
cloud. For example, VoxelNet [73] first divides the 3D point cloud into multiple
voxels, then randomly samples and normalizes the contained points, then uses sev-
eral Voxel Feature Encoding layers to extract local features for each non-empty
voxel, then these features are further abstracted through 3D Convolutional Middle
Layers, and finally a Region Proposal Network is used for object detection. The
subsequent improvement, SECOND [55], replaces VoxelNet’s standard 3D convo-
lution with sparse 3D convolution, achieving further gains in detection speed and
memory efficiency. In addition, SWFormer [52] combines the two methods of BEV
and voxelization, leveraging a Sparse Window Transformer to effectively process
variable-length sparse windows and capture cross-window correlation, and employ-
ing a novel voxel diffusion technique to enhance the accuracy of 3D object detection
with sparse features.
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Apart from the two mainstreams mentioned above, there are also some methods
that focus on how to learn effective spatial geometric representation directly from
3D point clouds. One of the representative works is PointPillars [21], which utilizes
PointNet [38] to learn the representation of point clouds, organized in the form of
vertical columns (i.e. pillars). The ability to operate at speeds higher than 60 Hz
makes PointPillars one of the most widely used end-to-end object detection methods
in mobile robotics, particularly in autonomous driving. As a summary of this section,
as Zhao et al. [72] astutely observed, it is unnecessary to be limited to end-to-end or
pipeline, combining the two may yield more competitive performance.

The remainder of this section details the segmentation-classification pipeline.
First, a method named ‘““adaptive clustering” developed by the author is presented.
Subsequently, an open-source suite for point cloud segmentation evaluation is intro-
duced to facilitate performance comparisons between different methods. Next, sev-
eral hand-crafted features for object classification are illustrated, followed by a
description of how these features are used to train two distinct classifiers. Finally, a
multi-target tracker for point cloud data is introduced.

3.3.1 Point Cloud Segmentation

Point cloud segmentation methods can be broadly classified according to the Al tax-
onomy into rule-based (symbolism), traditional machine learning-based (statistics),
and deep learning-based (connectionism) approaches. Rule-based ones typically seg-
ment point clouds based on their geometric features, intensity, surface normals and
other information. These methods offer advantages such as high computational effi-
ciency, robustness, and good interpretability. However, they struggle with complex
scenes and are susceptible to occlusion and noise. Traditional machine learning-based
methods extract shallow point cloud features and segment them using data-driven
models. These methods share similar advantages and limitations with rule-based
approaches. Deep learning-based methods, such as the previously mentioned Point-
Net [38], learn deep, abstract feature representations from point cloud data through
deep neural networks. While these methods overcome some limitations of the former
two categories, they require substantial training data, are prone to overfitting, and cur-
rently lack interpretability, which are challenges that require further research. Conse-
quently, combining rule-based and deep learning-based methods remains a promising
direction for addressing practical problems. The clustering methods detailed in the
remainder of this chapter are rule-based.

3.3.1.1 Adaptive Clustering

The input and output point cloud data representation of the adaptive clustering method
follows Eq. 3.3. The first step of the method is to remove the points representing the
ground from the point cloud, since they are not the points of interest and are usually
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connected to various objects (since most of the objects are grounded), causing a huge
hassle in segmenting them. To do this, a thresholding method is used:

P*={p; € P|z; <threshold} (3.4)

which means that all points below a preset distance threshold in the vertical direction
(here represented by the z-axis) are eliminated. It is important to note that Eq.3.4
is defined within the sensor coordinate system, where the negative z-axis points
downwards. As is easy to imagine, this one-size-fits-all approach has both benefits
and limitations: the former includes simple implementation and high computational
efficiency, while the latter includes two assumptions to ensure the performance of the
method: a flat ground and the z-axis of the sensor being perpendicular to the ground.
These assumptions can be relaxed by employing the local convexity criterion [33].

The second step of the adaptive clustering method is to segment the remaining
point cloud into non-overlapping clusters:

CiNC; =0, fori #j = min|p; — pjl> > d* (3.5)

where C;, C; C P*represents two such clusters, and d* denotes a maximum imposed
distance threshold. Equation 3.5 stipulates that if the minimum Euclidean distance
between a set of points p; € P* and another set p; € P* is greater than the given
threshold, then the points in p; are set to belong to the cluster C;, while the points
in p; are set to belong to the cluster C;. An efficient implementation of this idea is
introduced in [42]. Equation 3.5 works well for dense or structured point clouds but
suffers from sparse or unstructured ones. The specific manifestation is that if d* is
too small, a single object may be divided into multiple clusters, and if it is too large,
multiple objects may be merged into a single cluster (see Fig.3.7). In addition, in
terms of implementation, the computational cost of this method increases with the
distance between points.

Therefore, further processing is required, and one approach to overcoming this
performance limitation is to employ an adaptive d*. This necessitates understanding
the characteristics of point cloud data generated by typical mechanical 3D lidars. Due
to their physical structure (see Sect. 3.2.2), these lidars produce point clouds with high
horizontal resolution and comparatively low vertical resolution, with point density
decreasing as distance increases. A representative example is shown in Fig. 3.8, which
illustrates the point cloud generated by a 16-layer lidar scanning a human at varying
distances. This lidar has a horizontal resolution of 0.1° and a vertical resolution of 2°.
As the distance increases, the vertical spacing between points becomes significantly
more pronounced compared to the horizontal spacing.

Therefore, it is a straightforward idea to adapt the threshold d* linearly with
respect to the scan distance:

G

d*=2-r~tan3 (3.6)
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Fig. 3.7 Point cloud of two distinct objects (red and blue). Different values of d* lead to different
clustering results
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Fig. 3.8 Example of 3D lidar human point clouds at different distances. The further the person is
from the sensor, the sparser is the corresponding point cloud

where r represents the scan distance and ® is the lower resolution, e.g., for the
aforementioned 16-layer lidar, ® = 2°. In the implementation of Eq.3.6, an issue
that needs to be considered is which points in P* should be clustered using the same
d* value. By observing the morphology of ground data generated by 3D lidar and
inspired by water ripples, a sensor-centered nested ring point cloud data segmentation
method is proposed (see Fig.3.9). The formal description is as follows. Consider a
set of values d;" at fixed intervals Ad, where d;‘+1 = d} + Ad. For each of them, the
maximum cluster detection range r; is calculated using the inverse of Eq. 3.6 and the
corresponding radius R; = |r;] is determined, where Ry is the center of the sensor.
The width of a region with constant threshold d; is [; = R; — R;_. Therefore, the
points in each ring are clustered using the same d;*. Moreover, the scale of d* needs
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3D LiDAR
d 1= 0.1

Fig. 3.9 Different nested regions are clustered using different d* values. In this example, the
cluster (orange point) at a distance of 9 m from the sensor is located on the 4th circular region, and
its clustering threshold is dj = 0.4m

to be considered during actual operation. For example, a good practice for clustering
points representing humans generated by the 16-layer lidar uses Ad = 0.1 mto obtain
circular regions with width 2 to 3m.

It is worth mentioning that filters can be used to further optimize the performance
of the algorithm for specific tasks. For instance, to make human detection and tracking
more effective, a volume-based filter can be used to filter out clusters that are too
large or too small [56, 57]:

C={C;102<w;<1,02<d;<1,02<h; <2} 3.7
where w;, d;, and h; are the width, depth, and height (in meters) of the bounding

volume containing C;, respectively. The adaptive clustering method is implemented
based on a k-d tree and has a time complexity of O(logn).
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3.3.1.2 Benchmarking

In order to effectively evaluate various methods and gain insights into their strengths
and weaknesses, the LiDAR Point Cloud Clustering Benchmark Suite’ [68] can be
used. It provides evaluations of five open-source methods on three reproduced open
datasets as community baselines. For the former, in addition to the adaptive clustering
method, it also includes:

e Run-based clustering [71], which consists of two steps. First, points representing
the ground are extracted iteratively using deterministically assigned seed points.
Then the remaining non-ground points are clustered using a two-run connected
component labeling technique in binary images.

e Depth clustering [7], which is a fast and computationally inexpensive method that
first converts 3D lidar scans into 2D range images and then segments the latter.

e Euclidean clustering [42], which clusters points by directly calculating the L,
distance between any two points in 3D space.

e Autoware clustering [18], which is a modified version of Euclidean clustering. It
first implicitly projects the points onto the 2D (x-y) plane and then segments them
based on the L, distance.

Three open datasets were re-annotated and the five open source methods men-
tioned above were run on them. These datasets were collected outdoors using three
differentlidars, including the L-CAS dataset collected using a Velodyne VLP-16 [57],
the EU long-term dataset collected using a Velodyne HDL-32E [61], and the KITTI
dataset collected using a Velodyne HDL-64E [15]. The L-CAS dataset was collected
in a parking lot with a stationary robot and contains two fully labeled pedestrians
with no occlusions or truncations in the samples. The other two datasets were col-
lected in urban road environments with a human-driven instrumented vehicle. The
EU Long-term dataset provides labels for cars near a roundabout, while the KITTI
dataset includes annotations for pedestrians, cyclists, and various vehicle types.

Accurate performance evaluation hinges on high-quality ground truth annotations.
Therefore, the following steps were taken to ensure the quality of the annotations for
each dataset:

e L-CAS dataset: The accuracy of the existing annotations was improved.

e EU Long-term dataset: 200 consecutive frames were extracted from the round-
about data collected on April 12, 2019. All vehicles within these frames were
meticulously annotated.

e KITTIdataset: To address limitations in the original KITTI annotations, 200 frames
were randomly selected from the 3D object detection data and re-annotated. The
original bounding boxes, based on RGB image projection, estimate the full vehicle
size and might not objectively reflect the clustering method’s performance.

Additionally, for the EU Long-term and KITTT datasets, a ray ground filter [16] was
employed to remove ground points instead of a simple z-axis threshold. This approach

3 https://github.com/cavayangtao/lidar_clustering_bench.


https://github.com/cavayangtao/lidar_clustering_bench
https://github.com/cavayangtao/lidar_clustering_bench
https://github.com/cavayangtao/lidar_clustering_bench
https://github.com/cavayangtao/lidar_clustering_bench
https://github.com/cavayangtao/lidar_clustering_bench

3.3 Object Detection in Point Clouds 53

Table 3.2 Clustering accuracy of different methods on different datasets

Approach Parameters Precision (best in bold)
Ground Min/Max Clustering 6 L-CAS (%) EU long-term | KITTI (%)
removal points (%)
Run Paramsgpp |2/22million | Paramsspp |37.63 35.97 29.25
clustering [71]
Depth 7° 5/2.2 million | 10° 14.61 28.72 42.69
clustering [7]
Euclidean —0.8m/— 5/2.2 million | 0.75m 39.26 14.78 30.63
clustering [43] | 1.25m/—
1.5m
Autoware —0.8m/— 5/2.2 million | 0.75m 50.68 34.00 32.15
clustering [18] | 1.25m/—
1.5m
Adaptive —0.8m/— 5/2.2 million | Adaptive 62.38 32.99 33.24
clustering [57] | 1.25m/—
1.5m
Euclidean Ray ground 5/2.2 million | 0.75m 22.19 71.12 67.16
clustering [43] | filter
Autoware Ray ground 5/2.2 million | 0.75m 27.20 62.13 70.86
clustering [18] | filter
Adaptive Ray ground 5/2.2 million | Adaptive 31.81 37.13 20.28
clustering [57] | filter

ParamsGpr = {Nsegs = 3, Niter =3, NLpR =20, Thgeeqs = 0.4m, Thgis =0.2m}
Paramssp g = {Thrun = 0.5m, Thyperge = 1 m}

improves the completeness of the annotated bounding boxes. All annotations were
consistently performed using the L-CAS 3D Point Cloud Annotation Tool* [57].

Furthermore, to ensure compatibility with run clustering [71] and depth cluster-
ing [7], which rely on ring information, the missing ring number (corresponding to
the 3D lidar’s scanning layer) in the KITTI point cloud data was estimated using the
following equation:

arcsin(\/ﬁ) + FoVipun 58

FoV

ring = [ n x

where n is the number of lidar layers, (x, y, z) are the coordinates of a laser point,
FoV is the lidar’s vertical field of view, and FoV,,,, is the vertical field of view
below 0°. The resulting ring number is rounded to the nearest integer.

The 3D Intersection over Union (3D IoU) between clustered and ground truth
bounding boxes serves as the metric for evaluating the clustering accuracy of each
method. The benchmarking results are presented in Table3.2. All methods were
executed using the parameters specified in their respective publications. When a
parameter value was not explicitly defined, the optimal value determined through
experimentation was used. As shown in the table, the adaptive clustering method

4 https://github.com/yzrobot/cloud_annotation_tool.
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achieves the highest performance on the L-CAS dataset, thanks to its direct compu-
tation of the Euclidean distance between different points in 3D space. Conversely,
the depth clustering method’s performance is negatively impacted by edge cases,
particularly when objects are in close proximity and background objects are larger
than foreground one. The run clustering and depth clustering methods demonstrate
superior performance on the EU Long-term and KITTT datasets, respectively, due to
their increased robustness to uneven and sloped road surfaces.

To further analyze the performance of the evaluated methods, additional exper-
iments were conducted to investigate the impact of ground removal. As previously
mentioned, while threshold-based ground removal is often employed to meet the
real-time constraints of robotic systems, it relies on the assumption of a flat ground
surface. Therefore, it is pertinent to investigate whether more sophisticated ground
removal techniques can enhance the performance of related clustering methods. As
shown in the final three rows of Table 3.2, applying the ray ground filter [16] gen-
erally improves the clustering performance of the original threshold-based methods
on the EU Long-term and KITTI datasets, but leads to a decrease in performance
on the L-CAS dataset. This decline is attributed to the filter inadvertently removing
portions of pedestrian feet, resulting in clustered bounding boxes that are smaller
than the ground truth in most cases.

On the other hand, the runtime of each clustering method was evaluated. The
experiments were performed on Ubuntu 18.04 LTS (64-bit) and ROS Melodic, using
an Intel i7-7700HQ processor (only one core is used), 16 GB of memory, and no
GPU was used. The experimental results are shown in Fig.3.10. It can be seen that
the processing time of all methods is proportional to the number of points contained
in the point cloud, with the 16-layer lidar data exhibiting the shortest processing
time and the 64-layer data the longest. Depth clustering demonstrates a significant
performance advantage due to its dimensionality reduction of the point clouds and
its optimized implementation. Run clustering also exhibits competitive runtime, as
it effectively leverages prior knowledge such as ring information, thus avoiding full
point cloud traversal. The remaining three methods are implemented using the k-
d tree provided by PCL, resulting in an average time complexity of O(knlogn),
which is comparatively time-consuming. Among these three, adaptive clustering is
the fastest, owing to its ring-based point cloud partitioning, which reduces the k-d
tree search space. Autoware clustering outperforms Euclidean clustering for larger
point clouds, as it performs clustering in the 2D plane after projecting the 3D point
cloud, whereas Euclidean clustering performs the tree search directly in 3D space.

3.3.2 Object Classification

Object classification in point clouds involves assigning semantic labels to individ-
ual points or groups of points. This section focuses on hand-crafted features and
traditional machine learning models.
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Fig. 3.10 Runtime performance of the evaluated clustering methods

Table 3.3 Handcrafted features used for object classification

Feature Description Dimension
N Number of points included in the cluster 1
2 Minimum cluster distance from the sensor 1
Ni) 3D covariance matrix of the cluster 6
fa Normalized moment of inertia tensor 6
S5 2D covariance matrix in 3 zones 9
including the upper half, the left and right lower halves
fe The normalized 2D histogram for the main PCA plane |98
fa The normalized 2D histogram for the secondary PCA 45
plane
13 Slice feature for the cluster 20
fo Reflection intensity’s distribution 27
(mean, standard deviation and normalized 1D
histogram)
fio Distance from the centroid of each slice to the sensor 10

3.3.2.1 Hand-Crafted Features

Table 3.3 summarizes commonly used hand-crafted features for point clouds. Among
them, {fi, ..., f7} were introduced by Navarro-Serment et al. [35], while {f3, fo}
were proposed by Kidono et al. [20]. Due to the “learn quickly and deploy immedi-
ately” requirement of Robot Online Learning (ROL) [60], a balance between feature
completeness and computational efficiency is necessary. Specifically, based on anal-
yses in [20] and [57], the feature set { f1, ..., f1, fs, fo} has been used for pedestrian,
cyclist, and car detection in mobile robotics [56, 59, 63—-65]. The feature fjo, termed
“slice distance”, was proposed by Yan et al. [S7] and has been shown to improve
pedestrian detection accuracy. To understand this feature, it is necessary to first
explain the “slice feature” fg. This feature divides the 3D points within a cluster
into 10 equal-height slices and calculates the length and width of each slice (see
Fig.3.11):

fs={L;,W;lj=1,...,10} 3.9
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Fig. 3.11 The slice feature
proposed by Kidono et al.
[20]

Therefore, the slice distance aims to relate the distance measurement of the sensor to
the 3D shape of the human body, which is particularly useful for classifying sparse
point clouds at long ranges. It is calculated as the Euclidean distance of each slice
centroid to the origin:

fio=1{llcilla | e = (i, yinz) e R i =1,..., 10} (3.10)

where ¢; is the centroid of the i-th slice:

1
¢; = Di (3.11)
|Cil Z

pi€Ci

where C; is the set of points in the i-th slice.

3.3.2.2 Learning Models

Pedestrian classification in 3D point clouds is typically a nonlinear classification
problem. This is because 3D point cloud data is inherently nonlinear, and the decision
boundary between pedestrian and non-pedestrian points is unlikely to be a simple
hyperplane. Asillustrated in Fig. 3.12, the shapes of pedestrians can vary significantly
due to differences in pose, size, and orientation, as well as point cloud sparsity,
occlusion, and background complexity. Commonly used nonlinear classifiers include
Support Vector Machine (SVM), Random Forest (RF) and DNN. SVM has a strong
mathematical foundation and perform well with limited data, making it suitable
for ROL [56, 56, 57], as discussed further in Chap. 4. RF can satisfy the ROL
requirements for faster model training and online adaptability in long-term, cross-
environment deployments [63—-65]. While DNN is a promising model, its current
computational demands and challenges in real-time model updating place it outside
the scope of this section.
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Fig. 3.12 Example of annotated point clouds generated in an academic building [57]. Ground
and ceiling points have been removed. Each bounding box represents a cluster, and red boxes are
humans. The image contains some typical annotation challenges: (1) A human sample at 25 m from
the sensor consisting of only five points; (2) A cluster of a seated person, merged with a chair;
(3) A cluster of two people sitting at a round table, which clearly could not be labeled as human;
(4) A human head only and the rest of the body is occluded; (5) A set of clusters of people with
many occlusions

Next, we detail the implementation of SVM-based [56, 56, 57] and RF-based [63—
65] classification. For the SVM approach, in each ROL iteration, a binary SVM
classifier is trained using the features described earlier to distinguish between human
and non-human clusters. LIBSVM [10] is used for training. The ratio of positive to
negative training samplesis 1 : 1, and all data values are scaled to[—1, 1]. A Gaussian
Radial Basis Function (RBF) kernel [19] is employed, and the SVM outputs class
probabilities. The original implementation retrains the classifier from scratch in each
iteration, using all accumulated training examples. Consequently, the training time
is proportional to the number of samples, ranging from sub-millisecond to several
minutes. However, the training process can be decoupled from ROL (e.g., using
independent threads [29, 70]) or accelerated by optimizing the k-fold cross-validation
used for hyperparameter tuning.

For RF-based classification, an online variant, named Online Random Forest
(ORF) [44], is employed. The latter combines the ideas of online bagging and extreme
RF, and proposes an online decision tree growth strategy that allows its performance
with streaming data to converge to that of offline RF with batch data. Specifically, a
tree node is split based on two criteria: 1) whether the node contains enough samples
for robust statistics, and 2) whether the split provides sufficient classification gain.
These two conditions are formalized as:
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IRi| >a A FIseS:AL(Rj,s)>p (3.12)
where « is the minimum number of samples required in a node before splitting, 8 is
the minimum gain required for a split, R; represents a decision node, and AL(R;, s)

is the gain of node j with respect to test s, calculated as:

|les|
IR;]

|R jrs |
AL(Rj,s) = L(Rj) — L(Rjis) — |R"| L(Rjrs) (3.13)
J
where R ;s and R, are the left and right child nodes resulting from split s. The split
with the highest gain is chosen for the node:

s; = argmaxAL(R;, s) (3.14)

sesS

Building upon the original ORF, we have added support for streaming data, mini-
batch learning, and real-time model storage. Further details are available in the
released code.’

3.4 Multi-target Tracking in Point Clouds

In mobile robotics, detecting and tracking moving objects is key to achieving use-
ful and safe robot behaviors. Similar to object detection (cf. Sect.3.3), multi-target
tracking also has both end-to-end and pipeline approaches. The former directly pro-
cesses raw sensor data and outputs the motion trajectory of each target. It combines
two tasks, object detection and object tracking, into a single model, typically based
on DNN [11]. The latter is usually referred to as the tracking-by-detection paradigm,
as illustrated in Fig.3.13. Specifically, objects are perceived by one or more sen-
sors, whose respective data (e.g., images or distance measurements) are processed
by software algorithms and produce position estimates of the objects relative to
the robot, such as orientation and/or distance, termed “observations”. Then in the
tracking phase, the observations are associated with previous or new object motion
estimates via some data association algorithms and are ultimately used by one or
more estimators (e.g., Kalman filter, particle filter, etc.) to update these estimates.
Methodologically, the multi-target tracking process consists of two stages (as
shown in Fig.3.14): data association and state estimation. In the first stage, new
observations from object detectors are compared with previous predictions from the
tracker and either associated with the latter or discarded. In the second stage, the
state estimates of the objects are updated based on their associated observations.

3 https://github.com/RuiYang- 1010/efficient_online_learning.
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Fig. 3.13 General architecture of a tracking-by-detection system [3]
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Fig. 3.14 An overview of the tracking process, including data association and state estimation [3]

3.4.1 Data Association

Two common data association algorithms are Global Nearest Neighbor (GNN) [4,
27, 34, 36] and Joint Probabilistic Data Association (JPDA) [2, 6, 46]. The former
associates new observations by matching them with their closest predicted ones. The
distance is usually a statistical measure that takes into account the uncertainty of the
track estimates and sensor readings (e.g., Mahalanobis distance). GNN is a “one-
to-one” association algorithm, where each target can be associated with only one
observation, and each observation can be generated by only one target. Observations
that have not been associated with any target at the end of the procedure are usually
used for the creation of new tracks. The advantage of this method is that it is fast
and can therefore handle a large number of targets and observations. The limitation
is that it struggles to handle occlusions.

For each observation and each tracked target, JPDA calculates their association
probability based on the distance between the observation and the target’s predicted
state and the target’s survival probability. Different from data association of GNN,
JPDA employs a many-to-one/one-to-many approach, where several observations
can be generated by the same target, and several targets can give origin to the same
observation. This increased flexibility makes JPDA more robust to certain scenar-
ios, such as short occlusions, but also computationally more expensive than GNN.
Therefore, we suggest using the JPDA method for small-scale multi-target tracking
and the GNN method for large-scale multi-target tracking.



60 3 Robot Perception

3.4.2 State Estimation

The Unscented Kalman Filter (UKF) is an effective method for target state estimation.
For human tracking in point clouds, the prediction step can be based on the following
constant velocity model [23]:

Xk = Xp—1 + AL X
X = Xk
Yk = Yi—1+ At Yi
Yk = Yi-1

(3.15)

where x; and y; are the Cartesian coordinates of the target at time #;, X; and yy, are their
respective velocities, and At = #; — t;_;. The position of the cluster representing the
human is calculated by projecting its centroid ¢; (see Eq.3.11) onto the xy-plane:

CQ:)\,-Ci, )\.2(1,1,0) (316)

The update step of the estimation then uses a 2D polar observation model to
represent the position of the cluster:

O = tan~"(yk/x)
— 3.17)
Vi =X+ Vi

where 6; and y; represent the cluster’s azimuth and distance with respect to the
sensor, respectively. Note that for simplicity, noise and coordinate transformations,
including those associated with the robot motion, are omitted in the above equation.
The choice of the polar observation model over a Cartesian observation model for
3D lidar is driven by the data and noise characteristics of this sensor. Its measure-
ments are range values at regular angular intervals, and the noise is directional. The
nonlinearity of the model also leads to the adoption of UKF, which outperforms
the standard Extended Kalman Filter (EKF). The estimation framework is shown to
be an effective solution for human tracking with mobile robots [5, 27]. For further
details on track management (including initialization, maintenance, and deletion)
and possible applications, see [4, 5, 13].

Finally, the process noise covariance matrix Q for the prediction model and the
measurement noise covariance matrix R for the observation model are defined as:

Mo %02 0 0
AP 2 2.2 2
| Fof Atfor 0 0 _|og O
0= 0 e ae| *=log] O

AP 2 2.2
O 0 TG)' Af Uy
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where o,, 0y, 0y, and o, represent the standard deviations of the respective noise
components and are empirically determined to optimize human tracking performance
for the given robot platform.

3.5 Conclusion

This chapter explored research in robot perception, specifically focusing on 3D lidar-
based human detection and tracking. We began by summarizing fundamental aspects
of 3D lidar, covering its ranging principles, scanning architectures, physical char-
acteristics, data representation, and practical applications within industry. Next, a
pipeline-based object detection approach was presented, encompassing point cloud
segmentation and object classification. For the former, the “adaptive clustering”
method was detailed, alongside the “LiDAR Point Cloud Clustering Benchmark
Suite”, designed to enable fair performance comparisons across various techniques.
For the latter, we initially examined hand-crafted features for human classification,
then extended this to include the differentiation of cars, cyclists, and pedestrians,
employing SVM and RF as learning models. Finally, the multi-target tracking sys-
tem was described, with particular emphasis on the state estimation step, specifically
adapted for tracking individuals within point cloud data.

Generally speaking, human detection based on 3D lidar is one of the key technolo-
gies in the fields of mobile robotics, autonomous driving, smart security and more.
In recent years, with the development of hardware and Al technology, research on
this topic has made rapid progress. However, several challenges still exist. First, the
prices of the high-performance 3D lidars currently in mass production are not yet
generally affordable. This reflects, from one aspect, the importance of datasets in
promoting the development of related technologies. Fortunately, there are already
numerous datasets available in the community (see Sect. 2.4). In the future, we hope
that more high-quality datasets for different scenes and scenarios will appear, partic-
ularly those based on multi-sensor perception systems. Second, as mentioned earlier,
the point clouds generated by most current 3D lidars are sparse, making it difficult
to extract effective features for small and distant objects. This not only puts forward
the demand for the continued development of hardware, but also creates space for
the joint use of 3D lidar with other modal sensors such as cameras. Finally, due to
its physical characteristics, the performance of lidar is sensitive to adverse weather
conditions such as rain, fog, and snow. How to model and reduce the noise caused by
water droplets in the air is a research direction worthy of in-depth study [66, 67, 69].
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Chapter 4 ®
Robot Learning Grest o

Abstract This chapter introduces the research on robot learning, with a focus on
Robot Online Learning (ROL) frameworks. It begins by defining ROL and moti-
vating its necessity for robots operating in dynamic environments. Two prominent
ROL frameworks are then presented: one based on Positive-Negative (P-N) learn-
ing and the other leveraging knowledge transfer. A comparative analysis highlights
the strengths and weaknesses of each approach. Specifically, while P-N learning
operates autonomously, it is susceptible to self-bias. Conversely, knowledge transfer
can mitigate self-bias but requires external guidance and must address potential con-
flicts between internal and external knowledge sources. The chapter further explores
strategies for mitigating catastrophic forgetting, a critical challenge in long-term
ROL. Finally, it demonstrates how ROL can be applied to enhance socially-compliant
robot navigation in extended, cross-environment deployments.

Keywords Online learning - Continual learning - Transfer learning - Catastrophic
forgetting + Socially-compliant navigation

4.1 Introduction

A key factor in humanity’s dominance on Earth is our remarkable capacity for learn-
ing. This ability allows us to accumulate knowledge, develop skills, and solve prob-
lems, enabling us to survive and thrive in a constantly evolving environment. Inspired
by this, the development of robot intelligence incorporating embodied learning is
a promising avenue of research, particularly given the significant role embodied
experience plays in human intelligence. This approach offers several key advantages:

e It enables robots to learn through interaction with the physical world, facilitating
the execution of complex real-world tasks.

e It fosters a deeper understanding of the world, crucial for long-term autonomy and
online adaptability of robots.

e It promotes more effective learning by allowing robots to learn from their own
experiences, rather than relying solely on human instruction or pre-existing data.
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Embodied learning encompasses a broad spectrum, from the micro-level acquisi-
tion of specific knowledge or skills to the macro-level pursuit of lifelong learning,
mirroring human capabilities.

This chapter focuses on embodied learning, specifically Robot Online Learning
(ROL). Generally speaking, Online Learning (OL) is a machine learning paradigm
where data is sequentially acquired and used to incrementally update a predictor for
future data, contrasting with batch learning methods that train a predictor on the entire
dataset at once. OL finds application in diverse areas, such as predicting user prefer-
ences for targeted advertising and product recommendations by internet companies.
Within mobile robotics, the “online” aspect of OL emphasizes robot autonomy, which
means that robots should learn in-situ, on-the-fly, spontaneously, and automatically,
without human intervention. The remainder of this chapter provides a systematic
overview of ROL.

4.2 Why Study Robot Online Learning

The motivation for studying ROL stems from two primary considerations. On the
one hand, we believe that robots with autonomous learning capabilities are very
consistent with people’s imagination of future robots. Specifically, as a learning
individual, the robot should show a certain degree of initiative in learning knowledge
and applying learning outcomes. This need is especially evident when the deploy-
ment environment of the mobile robot is changing, or when certain tasks require
the robot to travel across different environments. In such scenarios, the robot can
sense the environmental changes through its perception system and learn about them
online, ultimately responding appropriately to these changes in a timely manner. On
the other hand, we are concerned about some limitations of offline learning methods.
First, offline learning is usually accompanied by obvious human costs, such as data
collection and annotation, model debugging and maintenance, etc. Second, offline
models are inherently unable to support long-term autonomous operation of mobile
robots, because there will always be situations that the robot has not seen or learned,
such as corner cases, long-tail problems, domain shift, etc. For instance, Fig. 4.1 illus-
trates atypical road users, whose detection and tracking may pose a challenge for
autonomous vehicles. Even a comprehensive Operational Design Domain (ODD)
cannot anticipate every possible scenario.

4.3 Challenges of Robot Online Learning

This chapter addresses two key challenges in ROL.

1. Autonomous sample extraction from sensor data: Mobile robots rely on
diverse sensors to perceive their internal state and surrounding environment.
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Fig. 4.1 Some long-tail examples in road participant detection

The measurements from sensors are represented in various data forms, such as
images produced by cameras and point clouds produced by 3D lidars. These
data correspond to observations made by the robot and are analyzed by it to
extract information of interest. Taking object detection introduced in Chap. 3 as
an example, the robot needs to determine the location and category of the object
it wants to learn in each observation, and then extract data representing the object
as a learning sample. Automating this process is very challenging, particularly
in complex and highly dynamic environments such as university cafeterias [1,
2] and urban roads [3, 4]. If we consider the 3D lidar introduced in Chap. 3, it
is even more challenging due to the sparsity of the data it produces and the lack
of easy-to-learn features such as color and texture.

2. Mitigating catastrophic forgetting in long-term ROL: In ROL, or even in
any learning method that requires updating a model, new learning can cause
the performance of previously learned models to degrade, a problem known
as “catastrophic forgetting”. A practical example is illustrated in Fig. 4.2. The
probability of this problem occurring increases with the diversity of learning
samples or tasks. In mobile robotics, the long-term deployment of robots will
inevitably lead to the diversity of learning tasks. The problem of catastrophic
forgetting has a long history of research in machine learning and is also one of the
research focuses of the deep learning community in this era. However, despite
significant progress in specific areas, many approaches to overcome catastrophic
forgetting do not generalize directly to robotics or are simply not feasible due
to limited onboard memory and computational resources. Therefore, there is a
need to develop methods applicable to mobile robots, which is of interest in this
book.

In addition, while the primary research objective is to address the challenges
of robot social navigation, Sect. 4.6 also explores, within the context of current
technological advancements, the integration of deep learning with ROL. A key
challenge in the latter lies in efficiently updating computationally demanding deep
neural network models—which offer the potential to break through the perfor-
mance bottleneck—onboard robots with constrained computing resources, all while
maintaining real-time performance.

For a better understanding, we further explain OL with reference to offline learning
and incremental learning. The intuitive differences between the three can be seen
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Fig. 4.2 Road participants of the same category in East Asia (left) and Western Europe (right)
with very different appearances. After the robot learns in East Asian scenes and then updates the
previously learned model in Western European scenes, the object detection performance of the
model may deteriorate after returning to the East Asian scene, and vice versa

Fig. 4.3 The use of three different learning paradigms in mobile robotics

from Fig. 4.3. Offline learning is similar to offline programming commonly seen in
industrial robotic arms, which means that the model is fully trained before being
deployed to the robot and remains unchanged during the operation of the robot. To
this end, data is collected in advance and usually annotated to ensure the final model
performance. The typical workflow involves a sequence of steps: data collection, data
annotation, model building, model training, model tuning, and model deployment.
If the model needs to be updated, some or all of these steps will need to be repeated.

Incremental learning can be implemented both online and offline. It processes
continuous data, but without strict real-time constraints. Human intervention is also
permissible to guide the iterative learning process and ensure model performance.
This learning paradigm prioritizes knowledge retention and mitigating catastrophic
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forgetting. In contrast, OL emphasizes autonomous, real-time learning during robot
operation, without human intervention. Timeliness is a key characteristic of this
learning method, which means learning quickly and applying the learned model
immediately.

All object detection methods discussed in Sect. 3.3, with the exception of the
two examples using Support Vector Machine (SVM) and Random Forest (RF), are
non-online. To overcome the reliance on complete, annotated datasets and manual
intervention, several approaches have been proposed. For instance, Shackleton et
al. [5] employed surface matching for human detection, coupled with an Extended
Kalman Filter (EKF) to predict the position of a human target and facilitate the
detection in subsequent lidar scan. Teichman et al. [6] introduced a semi-supervised
learning method for multi-object classification, requiring only a small set of manually
labeled seed object tracks for classifier training. Dewan et al. [ 7] presented a classifier-
free approach for dynamic object detection and tracking, relying on motion cues.
Consequently, this method is not suitable for slow-moving or static objects, such as
pedestrians.

The work presented in the following sections systematically reorganizes and
expands upon research presentedin [1, 3, 8-10]. Specifically, Yanetal. [1] introduced
aROL framework for human classification in 3D lidar scans, leveraging a multi-target
tracker to eliminate the need for human experts to annotate the sensor data. Building
upon this, Yan et al. [9] addressed limitations in [1] related to assumptions about
human volume (as seen in Eq. 3.7) and movement speed. This was achieved by using
one sensor (or model) to train another, thereby enhancing the generality and robust-
ness of the ROL framework. Subsequently, Yang et al. [3] applied the framework
from [9] to autonomous driving, achieving ROL for road participants, including
cars, cyclists, and pedestrians. This work significantly enhanced the implementa-
tion from [1, 9] through the introduction of Online Random Forest (ORF) method.
Further development in [10] resulted in a generalizable framework to mitigate catas-
trophic forgetting in long-term ROL. Most recently, Okunevich et al. [8] integrated
deep learning models into the ROL framework for long-term, cross-environmental,
socially-compliant robot navigation.

Research on catastrophic forgetting can be traced back to the 1990s [11, 12]. One
approach to mitigating this issue involves preserving past knowledge by limiting
changes to model weights. For instance, a memory buffer [13] can be employed to
store data or gradient records from past training, thereby constraining the updates in
the current learning process. In situations where retaining information from previ-
ous tasks is impractical due to privacy or resource constraints, regularization-based
methods [14—16] offer an alternative by employing carefully designed regularization
losses to constrain forgetting of previously acquired knowledge while learning new
data. Another intuitive approach involves constructing a sufficiently large model and
allocating a dedicated subset of the model to each task. This can be implemented
by freezing a shared trunk and adding task-specific branches, effectively separating
old and new knowledge. However, this strategy can lead to a rapid increase in model
size [17]. Finally, replay-based approaches rely on retaining, or compressing, data



72 4 Robot Learning

representative of past tasks [18-20]. These methods combat forgetting by reintro-
ducing stored samples during training on new tasks. These replayed samples play a
critical role in joint training or loss optimization, safeguarding previously acquired
knowledge.

Section 4.5 introduces Long Short-Term Online Learning (LSTOL) [10], an
ensemble learning framework comprising a set of short-term learners and a long-term
control mechanism. The former can be any model suitable for OL, such as capable of
rapid iteration without storing learning samples. The latter features a gate controller
that controls whether each existing short-term learner should be updated, retained,
or deleted, or whether a new short-term learner should be created. The design of the
controller is based on primitives rather than complex reasoning, fully considering
the real-time requirements of robot physical interaction in dynamic real-world envi-
ronments. Furthermore, unlike Long Short-Term Memory (LSTM) networks [21],
LSTOL focuses on learning strategy rather than network architecture, and makes
no assumptions about the temporal continuity of learning data and accommodates
diverse short-term learner models.

Thanks to advances in deep learning, robot social navigation performance is con-
tinually improving [22-24]. Despite these advancements, deploying real-time online-
updatable deep learning models on resource-constrained robot platforms remains a
significant challenge. Deep learning models typically require substantial compu-
tational resources and memory, which can be prohibitive for embedded devices.
While model compression and the use of more powerful edge devices are poten-
tial solutions, this book focuses on model optimization, specifically, designing deep
learning architectures suitable for OL. To this end, Sect. 4.6 proposes a hierarchical
structure combining a heavyweight network with a lightweight network to enable
mobile robots to adapt autonomously and efficiently to new social environments. The
heavyweight network provides basic, robust navigation control and remains static.
The lightweight network evaluates the output of the heavyweight one and adjusts it
for social compliance, when necessary. This network is updated online by analyzing,
in real-time, the difference in social attributes between the robot’s trajectory and the
trajectories of surrounding humans, ultimately allows the robot to learn new social
contexts when they differ from previously learned ones.

4.4 Autonomous Sample Generation

This section introduces two methods for autonomously generating learning samples,
oneis based on Positive—Negative (P—N) learning and the other is based on knowledge
transfer.
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4.4.1 P-N Learning

The first method [1, 2] consists of four modules: a cluster detector based on the adap-
tive clustering method introduced in Sect. 3.3.1.1, a multi-target tracker introduced
in Sect. 3.4, a human classifier introduced in Sect. 3.3.2, and a sample generator
based on P-N learning [25]. Specifically, as illustrated in Fig. 4.4, the point cloud
data generated by the lidar is first input into the clustering module, which outputs
candidate learning samples (i.e., clusters) to both the multi-target tracker and the
online-updatable human classifier. The former is responsible for associating multi-
ple samples belonging to the same target and estimating the instantaneous velocity
of the target. The latter estimates the category to which each sample belongs, such
as “human” or “non-human”. After receiving the outputs of the multi-target tracker
and the human classifier, the sample generator employs the P-N learning method to
determine the final learning samples.

Because ROL operates without human supervision, it is inherently susceptible
to errors, such as false positives and false negatives. While reinforcement learning
could be considered for scenarios permitting trial-and-error with effective feedback,
it falls outside the scope of the research presented here. Instead, we aim for the
robot to autonomously detect and correct these errors. Drawing inspiration from the
tracking-learning-detection paradigm [26], two independent “experts” are employed
to correct the results given by the human classifier. The positive (P) expert cor-
rects false negatives, converting them to positive samples, while the negative (N)
expert corrects false positives, converting them to negative samples. Specifically,
at each time step, the P-expert analyzes clusters currently classified as non-human,
identifying likely false negatives and adding them to the training set as positive sam-
ples. Simultaneously, the N-expert examines clusters currently classified as human,

— point cloud 1
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clusters
[ Multi-target Tracker ] [ Human Classifier ]
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Sample Generator
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Fig. 4.4 P-N learning-based ROL framework
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Algorithm 1 Iterative model training with P-N learning

Require: H: Human classifier,
C: Clusters,
Cj,: Human clusters,
C),: Non-human clusters,
Sp: Positive samples,
S,.: Negative samples,
T),: Positive training set,
T,.: Negative training set,
p: Size of positive training set,
n: Size of negative training set
Ensure: H: Human classifier
1: while True do
2:  while |T,| < por|T,| <ndo
: [Ch, C,] < classify(H, C)

3

4 Sp <« Pexpen(cn)
5 N Nexpert(ch)
6: T, <~ TyUS,

7 T, < T,US,

8:  end while

9:  train(H, Ty, Ty)

10: end while

identifying likely false positives and adding them to the training set as negative sam-
ples. This dynamically constructed training set is then used to initialize and update
the human classifier. Through iterative learning, the classifier’s performance grad-
ually improves. In practice, the P-expert enhances the classifier’s generality, while
the N-expert improves its discriminability. Implementation details are provided in
Algorithm 1.

As for the implementation of the experts, it adheres to the structural constraints
of P-N learning and employs rule-based (heuristic) reasoning. This approach offers
advantages including efficiency, ease of understanding and maintenance, as well as
strong interpretability and scalability. However, it also has limitations, notably limited
generalizability and difficulty in handling incomplete, uncertain, and ambiguous
information. Specifically, both the P-expert and N-expert rely on information from
the multi-target tracker, making the tracker’s performance crucial.

The P-expert operates according to the following rules:

1. Sustained tracking and minimum displacement: The cluster must be continu-
ously tracked for a time interval of K A¢, during which it covers a minimum
distance . :

K

ne=vV@—x )+ Ok —y-)? and Y rexrh @D
k=1

2. Velocity constraints: The cluster’s velocity must be non-zero and within a
human’s preferred walking speed (viax = 1.4 m/s) [27]:
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Fig. 4.5 Example of a human track sample containing mixed objects. The green dashed line
represents the target’s trajectory, and the blue dashed circle indicates the uncertainty in its position

ve = /A7 + 7 and v, < v < vhy, “4.2)

3. Position variance constraint: The variances (oxz, 03) of the cluster’s estimated
position (x, y;) must satisfy:

G)cz + O-)% = (Ulﬁax ? (43)

p p p . .. . .
The values of K, r ., v, .., and omax require empirical tuning prior to deployment.

The position variance rule is particularly useful for distinguishing clusters where
humans and other objects are merged (often due to under-segmentation, as shown in
Fig. 4.5) or for identifying non-human clusters exhibiting sudden movements.

The N-expert operates according to the following rule:

1. Non-static condition: The cluster must not be completely static:

2, 2 2
r<r maxs  and oy +0) < (0,,) (4.4)

S Tmaxo Uk =V

The values of ¥*, , v , and ¢

hax> Vtnax> require empirical tuning prior to deployment.



76 4 Robot Learning

Following [26], a stability analysis of the ROL process can be performed by
examining the variations in false positives () and false negatives () produced by

the human classifier:
Qpet1 1—R™ I}T R* ay
= _ 4.5
[ﬁk+1] [‘P—PR- 1—rY | B 4)

where k denotes the learning/training iteration, and P+, R™, P, and R~ represent
the P-precision, P-recall, N-precision, and N-recall of the experts, respectively. The
recursive equation in Eq. 4.5 constitutes a discrete dynamical system, expressible as
Xp4+1 = Mxy. It can be demonstrated that if both eigenvalues (1 and A,) of M are
less than one, then x converges to zero.

An interesting observation by looking at Eq. 4.5 is that, if P* = P~ = 1,then M
becomes a diagonal matrix, and therefore its eigenvalues are simply A; =1 — R~
and A, = 1 — R™. In this case, even a small recall for both experts is sufficient to
guarantee A; < 1 and A, < 1, thus ensuring the stability of the learning process.
Based on these criteria, the following performance metrics are used for the P-N
experts:

+
n

P-expert Precision: Pt = —— 4.6
P n+nj (+6)

+
P-expert Recall: R* = % 4.7)
N-expert Precision: P~ = # 4.8)

n, +n f

N-expert Recall: R~ = o 4.9)

o

where n;" and n}' represent the number of true positives and false positives, respec-
tively, identified by the P-expert, while n;” and n, represent those identified by the
N-expert. o represents the total number of false positives from the human classifier,
which the N-expert should correct. Similarly, B represents the total number of false
negatives from the human classifier, which the P-expert should correct.

4.4.2 Knowledge Transfer

As previously mentioned, the performance of P-N learning is highly dependent
on the structural constraints of the data. However, the dynamic environments in
which mobile robots operate are sometimes weakly structured or may even lack
discernible structure. The advancements in robot multimodal perception, particularly
the breakthrough performance achieved with cameras, have inspired a solution to
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Fig. 4.6 Knowledge transfer-based ROL framework

this challenge: using easily-trained sensors to train those that are more difficult.
Consequently, a second sample generation method is proposed [9], also comprising
four modules (as illustrated in Fig. 4.6): an off-the-shelf detector Dy, a ready-to-learn
detector (for OL) D, a multi-target tracker 7', and a sample generator G.

This approach can be further formalized as a transfer learning process [28]: Given
a source domain D; = {X, M;(X)} and a learning task L, and a target domain
Dy ={X4, M;(X)} and a learning task L, transfer learning leverages knowledge
from D, and L to facilitate learning the target predictive model M,(-) in D;, where
Dg # D,y or Ly # Lg. In the knowledge transfer-based ROL framework, the source
learning task L; is performed in advance, whether online or offline, while the target
learning task L, is performed online with the assistance of M, (X).

Specifically, Dy and D, output detections to 7" and probabilities corresponding
to the detections to G. D; contributes to multi-target tracking on the one hand and
helps D, learn on the other. D, also helps with tracking, which may be relatively
small at first, but should increase as learning iterates. From a machine learning
perspective, D provides labeled data, while D, provides both labeled and unlabeled
data. T associates the received detections to generate a track V¥. Both moving and
non-moving targets are tracked. For the latter, the track length is a very small value
close to zero. The tracker plays a crucial role in knowledge transfer within this ROL
framework because it correlates detections, effectively establishing links between
the different detectors, thus enabling D, to learn from D.

The sample generator G fuses information from Dy, D, and T to generate learning
samples for D,. This constitutes a form of multi-sensor post-fusion, where resolv-
ing information conflicts presents a significant challenge. For instance, a dummy
model might be accurately identified by the camera but misclassified as a human
by the lidar. To address this, and drawing inspiration from multi-sensor occupancy
grid map fusion in Simultaneous Localization and Mapping (SLAM) [29, 30], a
track probability estimation method (visualized in Fig. 4.7) is proposed based on
Bayes’ theorem. This method measures the likelihood that a track belongs to a
specific object category, such as “human”, and is defined as follows. Consider a



78 4 Robot Learning

Fig. 4.7 Schematic diagram of the track probability

tracklet V¥ = {(x1, y1)s - .+, (X, Y1)} of length k generated by the tracker T. Let
P(Y*|V*), simplified to P(Y), denote the probability that this tracklet belongs to a
certain object category Y. Let di] € D (where D = D; U D) represent the detec-
tions produced by detector j at time i, which comprise the tracklet V*. Given
o detectors, we aim to compute the probability of V¥ belonging to category Y,
ie., P(Y|{dij}) fori=1,...,k and j=1,...,0. Assuming Markov indepen-
dence, such that P(d;|Y,{d"}) = P(d/|Y) form =1,...,i —1,i+1,...,k and
n=1,...,j—1,j+1,...,0,and starting with an initial probability P(Y) = 0.5,
we can calculate P(Y |{di] 1) as follows:

odds(Y |{d/})

PY{d/}) = ———— 1 (4.10)
1 + odds(Y|{d/})
where .
odds(Y[{d/}) = [ [ [ Jodds(¥|d}) 4.11)
j=li=1
and . .
J J
odds(Y|d/) = paridy) _ _P(Yid)) (4.12)

P(=Y|d)) 1—P(Y|d))

This probabilistic fusion approach has been theoretically and practically shown to
account for any existing knowledge about sensor interactions [29, 31], making it par-
ticularly well-suited for track category estimation based on multi-sensor information
fusion.

An intuitive and effective method for labeling the track V¥ is to threshold
P(Y|{d]}), i.e., P(Y¥|V¥, D). Specifically, given a predefined threshold P*, the
label for each detection (x;, y;) € V* is determined as follows:

_|zez+, itPaly = P

= : 4.13
"TNiez, P} <1- P (413)
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where Z* and Z~ represent the sets of positive and negative integers, respectively.
It is crucial to note that only P* is used to determine whether all detections within a
track V¥ are classified as positive or negative (due to P(Y =0|) =1— P(Y =
1]-)). Using any other threshold or an “otherwise” assignment would introduce
nonlinearities and complex special cases.

Once a track is labeled, learnable samples become available. Batch-incremental
Training (BiT) [32] strategy is proposed for model learning in D, for two reasons: a)
|[VK| > 1, and b) it offers greater model flexibility and accommodates concept drift
in ROL. Formally, given a training set sequence X k' x 12‘ X fn, where

XE={(xi, )l €U CRY, y, €Y, CZ), 1<i<m (4.14)

where Y; represents the set of category labels in the training set X; (e.g., human
or non-human), and k denotes the batch window size. Let M| represent the model
trained on X ;. The BiT process is then defined as:

where the subscript i represents the number of iterations rather than time.

It can be seen that the knowledge transfer-based framework exhibits the charac-
teristics of semi-supervised learning, since (1) the model sequentially learns non-
independently and identically distributed (non-1ID) P(V5 fully labeled by G, and
(2) the model learns from both labeled and unlabeled data in a batch manner. It
can also be seen that the framework is inclusive, allowing the integration of various
learning models such as Support Vector Machine (SVM), Random Forest (RF), Deep
Neural Network (DNN), and so forth.

Unlike the stability analysis for P-N learning, analyzing the stability of knowledge
transfer-based ROL at a micro-level (i.e., a single module) is challenging. Therefore,
stability is analyzed at a macro-level (i.e., the entire framework). Let u; denote the
number of correctly predicted labels by G in the i-th learning iteration. Learning
stability is then defined as:

1
stability (1) = > [lu; — ui | (4.16)
i=1

Theoretically, according to Lyapunov stability, the iterative system stabilizes if:

stability (/)
m ———==0

I—o0 1

4.17)
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4.5 Mitigation of Catastrophic Forgetting

In long-term ROL, catastrophic forgetting typically occurs in two scenarios: an
increase in the number of classes or tasks to be learned, and a shift in knowledge
domains. This section focuses on addressing the challenges posed by the latter. To
this end, the LSTOL framework [10] is presented, which aims to adapt a model to new
data distributions without forgetting the knowledge learned from previous domains.
Specifically, as illustrated in Fig. 4.8, LSTOL comprises a set of short-term learners
and a long-term controller. Each short-term learner can be implemented as a model
such as SVM, RF, DNN, etc., and learns from streaming data of various modalities,
such as images and point clouds. The long-term controller supervises the learning
process of the short-term learners and performs three key functions:

e Information Collection: This function gathers information about the short-term
learners, including their current output confidence, accuracy, and activity level
on downstream tasks. This information forms the basis for decisions regarding
knowledge retention and new knowledge acquisition.

e Gating Control: Based on an evaluation of the collected information and the
predicted probabilities provided by the short-term learners, this function deter-
mines the appropriate actions for the framework. These actions include retaining,
updating, or deleting existing learners, or creating new ones.

e Weight Estimation: This function dynamically adjusts the weights of each short-
term learner based on its past performance. A learner with high accuracy on a task
will have its influence (i.e., weight) on that task increased. Learners exhibiting high
prediction confidence act as “experts” and primarily determine the final prediction.
The task with the highest confidence becomes the output of both the long-term
controller and the entire framework.

It is important to emphasize that the LSTOL framework operates in a learn-as-
you-go fashion. The output of the long-term controller can be directly used for
downstream tasks, such as the object detection task introduced in Sect. 3.3. A specific
implementation of LSTOL, applied to road participant detection in point clouds as a
downstream task, is shown in Fig. 4.9. The details are as follows.

4.5.1 Learning Sample Extraction

The learning samples are extracted from the point cloud generated by the 3D lidar
installed on the self-driving car and are defined as follows:

S = track({x;, i, 1}, &) (4.18)

where {x;, ¢;, #;}{_, represents a set of n instances (in the form of clusters) of object
x tracked at different times ¢;. ¢; represents the confidence that instance i belongs
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Fig. 4.8 Schematic diagram of the LSTOL framework. It consists of two modules: short-term
learning and long-term control. The input sample is first predicted by a set of short-term learners. The
long-term control module then collects these pre-prediction information and calculates quantitative
indicators for online prediction. These indicators are subsequently input to the “Gate Controller”,
which determines the appropriate action for each learner (e.g., retain, update, remove, or create).
During the learning phase (indicated by the blue line), the long-term control module calculates
the online loss of each learner based on the current input sample to update the learner’s weights.
These updated weights are then used to determine the object category during the prediction phase
(indicated by the green line)

to a certain object class, and ¢ represents the overall confidence that the entire track
belongs to that class. Specifically (as shown in Fig. 4.10), given an object track
consisting of temporal detection samples from different detectors, the object can be
detected by one or more detectors (such as point cloud-based and image-based), with
corresponding confidence levels indicating the likelihood of the object belonging to
a particular class. In principle, all learning samples within a track should belong to
the same class, and this class label is determined by fusing the confidence scores of
all samples in the track. For example, although the point cloud-based detector might
occasionally misclassify an object (e.g., misclassifying a car as a cyclist due to the
need to improve performance in the early stages of ROL), if the image-based detector
and the majority of correct classifications from the point cloud-based detector indicate
that the object is a car, the entire track will be labeled as a car sample. This car label
will then be used for training the point cloud-based detector.
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Fig. 4.9 Implementation overview of the LSTOL framework. From left to right: Object samples
in successive point cloud frames are first associated using a multi-target tracker [4] and then input
to the online classifiers within the short-term learning module. The classification results from
these classifiers are collected by the Information Gatherer in the long-term control module, which
evaluates the performance of each learner based on a matrix of confidence, accuracy, and activity.
This evaluation is then input to the Dynamic Gate Controller, which determines the appropriate
action for each classifier (e.g., retain, update, remove, or create). The classification loss for each
sample is also input to the Weight Allocator, which updates the weights of the learners for different
object categories. These weights are subsequently used to determine the final classification of each
object

Fig. 4.10 Illustration of the extraction of learning samples. Rectangles represent detections by
the point cloud-based detector that require OL, while circles denote detections by the off-the-shelf
image-based detector
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4.5.2 Short-Term Learning

In the short-term learning module (denoted as st/), each learner employs ORF [33]
(detailed in Sect 3.3.2.2), which enables rapid training of multi-class models and
their real-time deployment. This can be formalized as:

1
stl(x) = h Y w;ORF;(x) (4.19)

i=I

where w; represents the weight of learner i, and & represents the fusion strategy
determined by the long-term control module.

4.5.3 Long-Term Control

Information Gatherer

In ROL, due to the absence of ground truth, traditional metrics like precision and
recall are impractical for real-time performance evaluation of the model. Therefore,
three “online” metrics including confidence, accuracy, and activity, are employed to
assess the real-time performance of each short-term learner. These are defined as
follows: 4

Confidence; = jer[rllax (r) (4.20)

where pij denotes the predicted probability that learner i classifies an object as
belonging to class j, and Confidence; represents the highest probability assigned by

learner i across all classes.
?OTTCCI

Accuracy; = ——— 4.21)

total
Di

where p$o™ represents the number of correct predictions made by learner i, and
p}"ml represents the total number of predictions made by learner i.

T
Activity, = ) " update; () (4.22)

t=1

represents the number of times learner i is updated within the time window 7.
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Dynamic Gate Controller

This module implements a probabilistic decision-making process to determine appro-
priate actions based on the three metrics provided by the Information Gatherer (as
illustrated on the far right of Fig. 4.9), summarized in Algorithm 2. Specifically,
line 3 stipulates that a learner must achieve high accuracy before updating to pre-
vent learning from incorrect data. The “retain” operation (line 8) encompasses two
scenarios. The first is when the learner exhibits low accuracy, indicating that the
new sample’s prediction falls outside its current knowledge domain. The second is
when the learner demonstrates both high accuracy and high confidence, suggesting
that it is already proficient with the input data and further learning is unnecessary.
Line 16 aims to eliminate learners exhibiting low confidence, low accuracy, and low
activity. However, as learner removal is a potentially detrimental operation, it is only
performed when the number of learners reaches the predefined maximum and a new
learner needs to be instantiated. Furthermore, while removal inevitably leads to some
loss of previously acquired knowledge, a balance must be struck between this loss
and allowing an unbounded number of learners. Line 26 specifies that if none of the
existing learners have been updated, a new learner will be created.

Weight Allocator

For each learner, a Dynamic Expert Weights (DEW) table is constructed, assigning
a weight to each class to represent the learner’s classification ability for that class.
Classes with better performance receive higher weights, thus amplifying their influ-
ence on the system’s overall prediction. Specifically, given a new set of samples S
input at time step ¢ + 1, where each s € S is confidently assigned to class k € K,
the Kronecker delta, denoted as y,, measures the consistency between the sample’s
predicted class and its true class k. Let p, x denote the probability that learner i pre-
dicts sample s belongs to class k. The loss for sample s is then calculated using the
logarithmic loss function:

L = —lyslog(psi) + (1 — y5) log(1l — psi)] (4.23)

The current weight wy (¢) is updated using Exponentially Weighted Moving Average
(EWMA) to reward correct predictions and penalize incorrect ones:

wi(t + 1) = Awe(?) + (1 = A) Lotal (4.24)
where 1
Ltolal = _? Ls,k (425)
| | seS

where L, ; represents the loss of sample s belonging to class k, and | S| denotes the
number of samples in S. The parameter A controls the update speed of the weights,
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Algorithm 2 Dynamic gate control

Require: N: Maximum number of learners,
¢;i: Confidence of learner i,
a;: Accuracy of learner i,
v;: Activity of learner i
Ensure: Learner i,
Learner j,
A new learner

1: updated < false

2: for each learner i € Z do

3: p<«odds(1 —cj,a;, 1 —v;)
4: if p > 0.5 then

5: update(7)

6: updated < true

7:  else

8: retain(i) {No action taken}
9: endif

10: end for

11: if —updated then
12: if |Z| = N then

13: Pmax < 0

14: j<9

15: for each learneri € 7 do

16: p < odds(1 —¢j, 1 —a;, 1 —v;)
17: if p > 0.5and p > ppyax then
18: j <«

19: Pmax < D

20: end if

21: end for

22: if j # ¢ then

23: remove(j)

24: end if

25:  else

26: create(new learner)

27: Z < Z U {new learner}

28: end if

29: end if

balancing the learner’s past and present accuracy. The final prediction stage employs
a voting strategy called Hand-raised as Expert (HraE):

Pe= Y WikDsk (4.26)

i:ps k>0

where w; ; is the weight of learner i for class k, and 6, is the minimum confidence
threshold for a learner’s prediction to be considered. This strategy prioritizes predic-
tions from learners with higher weights, effectively allowing the long-term control
module to focus on the most influential learners.
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4.6 Robot Online Learning for Navigation

In this section, we demonstrate the versatility and efficacy of ROL by showcasing its
application to a challenging downstream task: socially-compliant robot navigation.
Building upon the object detection example presented in Sect. 3.3, we delve into
how ROL empowers robots to navigate human-populated environments with appro-
priate social awareness. Socially-compliant robot navigation presents a unique set of
challenges. Robots must seamlessly integrate into human spaces, adhering to often
implicit social norms and adapting to diverse human behaviors. These behaviors are
influenced by a multitude of factors, including individual preferences, cultural con-
texts, and dynamic environmental conditions. Predicting and exhaustively enumerat-
ing all possible scenarios for offline training is inherently difficult, if not impossible.
Consequently, traditional offline learning-based approaches often struggle to guaran-
tee socially acceptable robot behavior in long-term deployments, particularly when
faced with novel or cross-environment situations. These methods may exhibit brittle
performance when encountering situations not explicitly represented in the training
data, leading to navigation that feels unnatural, unpredictable, or even intrusive to
humans.

ROL offers a promising solution to this challenge by enabling robots to learn
and adapt online, in real-time, to the nuances of human social dynamics [8]. This
section introduces a two-layered ROL-based approach designed to imbue robots
with social intelligence during navigation. This architecture mirrors the knowledge
transfer-based ROL framework discussed in Sect. 4.4.2, leveraging a pre-trained
“off-the-shelf” navigator as a foundation upon which a “ready-to-learn” social nav-
igation layer is built. Specifically, the bottom layer employs a deep reinforcement
learning (DRL) approach to provide the robot with fundamental navigation capa-
bilities, generating basic movement commands. This DRL-based navigator can be
pre-trained in simulation or on a limited real-world dataset, providing a robust foun-
dation. However, it may lack the social finesse required for seamless human-robot
interaction.

The upper layer, powered by ROL, addresses this limitation by refining the raw
navigation commands from the DRL layer, injecting social awareness and ensuring
compliance with human expectations. This ROL layer acts as a social filter, adapting
the robot’s trajectory and behavior based on observed human interactions and envi-
ronmental cues. By continuously learning and updating its internal model of social
norms online, the robot becomes increasingly adept at navigating in a socially appro-
priate manner, even in previously unseen environments. This online adaptation allows
the robot to personalize its navigation style to different social contexts and individual
preferences, fostering a more natural and comfortable interaction with humans. The
overall architecture of this two-layered social navigation framework is visualized in
Fig. 4.11. The following subsections will detail the specific implementations of both
the DRL-based bottom layer and the ROL-based upper layer.



4.6 Robot Online Learning for Navigation 87

Social navigation module

_/

Human and robot Navigation

I
1
1
1
states 1 ioati reward
ﬁ&_/ N Navigation > 1 Robot
module Reward | !, .
. L1 i | action
Previous robot’s Social merge :
positions ! | gqcjal reward | module | 1
> > 1
1
1

1 module
g ! X
e

i Updated social module
[ Robot trajectory

Online social

g g context learning
7y

New social context

'— Human trajectories

Fig. 4.11 Method design for enhancing the social navigation ability of robots using ROL. The
navigation module is the bottom layer, which computes the next actions for the robot. The social
module is the upper layer, which refines these actions to improve social compliance when needed.
Online social context learning enables timely updates to the social module, facilitating socially
normative robot navigation, particularly during long-term or cross-environment deployments

4.6.1 Basic Navigation Module

The bottom layer of the social navigation framework is implemented using Socially
Attentive Reinforcement Learning (SARL) [22], a value-based deep reinforcement
learning approach known for its strong performance in navigating human-populated
environments. SARL aims to learn an optimal navigation policy, denoted as 7 *(s;"),
that maximizes the cumulative discounted reward, effectively achieving the highest
value V*(s]") for the joint state s;" at time :

T
Vi) = )y R (5] (s]")) 4.27)
i=t

where y € [0, 1) represents the discount factor, vpr serves as a normalization param-
eter for y, improving numerical stability during training [34]. and T denotes the time
step of the final state. To approximate the next joint state s,j:f Ar» @ constant velocity
model (see Sect. 3.4.2) is employed to predict human movements over a short tem-
poral interval At. This allows us to estimate the future state based on the current joint
state s]" and the robot’s action a,. Consequently, the optimal policy can be expressed
as: ' ' '

7*(s]") = arg nzax[R, 7", a)) + yArimy (s A] (4.28)

where the value network V is trained using the temporal difference (TD) method
with experience replay [22—24]. The robot’s action space is defined by its speed
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and angular direction. Holonomic kinematics are employed to model robot motion,
allowing movement in any direction with variable acceleration. Specifically, the
action space comprises 80 discrete actions, combining five linearly spaced velocities
between 0 and vyr with 16 evenly distributed angular directions from O to 27r. The
best action is selected by evaluating the sum of the reward and value functions for
each action in the action space.

A crucial modification introduced here to the original SARL framework lies in the
design of the reward function. Instead of simply rewarding the robot for reaching the
target position, we incentivize it to minimize unnecessary path deviations while
maintaining social compliance. The original binary reward is therefore replaced
with dpjan /dreal, Where dpa, represents the initial Euclidean distance from the robot’s
starting position to the target, and d., denotes the actual distance traveled by the robot
upon reaching the target. This ratio encourages the robot to find a direct, efficient
path. The complete reward function is defined as follows:

-0.25 if diin < O (collision)

R.Gs [j,,7 a) = dplan/ dreal else if d, = 0 (goal reached) (4.29)
—0.1 4+ dpin/2  else if dyin < d, (close to human)
0 otherwise

where di, is the distance to the nearest person, and d. represents the comfortable
social distance. Critically, d. can be dynamically adjusted based on the specific
spatio-temporal context. For instance, d. might be larger in crowded malls or during
periods of heightened social distancing (e.g., during an epidemic), and smaller in less
crowded environments or during normal times. This adaptability allows the robot to
personalize its navigation behavior to different social situations. d, = 0 indicates
that the robot has reached the goal.

4.6.2 Online Adaptation Module

The upper layer of the framework comprises a ROL-based social adaptation mod-
ule, which is designed to learn the nuances of social context from observed human
trajectory data and subsequently refine the navigation control commands generated
by the bottom layer (SARL). Crucially, to ensure adaptability to diverse social envi-
ronments, this module is updated online, continuously incorporating new social con-
text information. The core principle behind this online adaptation is intuitive: if the
action a; suggested by SARL is deemed socially acceptable, its corresponding value
should be increased, thereby reinforcing its selection by the optimal policy 7 *(s]").
Conversely, if the action is considered socially inappropriate, its value should be
decreased, discouraging its future selection. Building upon the effectiveness of small-
batch ROL [2] and leveraging the power of tracklet-based behavioral analysis [35],



4.6 Robot Online Learning for Navigation 89

Fig.4.12 A robot tracklet and the social value network. The blue dots represent u past robot states,
the yellow dot indicates its current state, the red dot shows the robot’s state after action a,, and the
green dots depict f predicted future states. The social value network, comprising a GRU and four
fully connected (FC) layers, takes the robot tracklet as input. The numbers below indicate input
dimensions. The network output, Social Value (SV), is 1 for a social tracklet and 0 for a non-social
tracklet

a tracklet-based sociality assessment method is employed. This approach is visu-
alized in Fig. 4.12. Specifically, a tracklet is defined as a sequence of the robot’s
instantaneous states:

1r(Se, A1) = [;_wanys Si—(=1)ans -+ -+ St Sipars -+ Sip(1+ )y an ] (4.30)

where each state s; within the tracklet encapsulates the robot’s position and velocity
at time ¢, represented as s; = [py, py, Vx, Vy],. The tracklet extends both backward
and forward in time. The terms sf_(u Aty sf_((u_l) Ay - - - Tepresent the robot’s states
at u previous time steps, while s; denotes the current state. s;_,, represents the
robot’s state immediately after executing action g, at time 7. Finally, ..., 5/ (14 f)ar)
represents the predicted future states of the robot, assuming action a, is repeatedly
applied for f subsequent time steps. This forward-looking component allows the
module to anticipate the short-term consequences of the chosen action.

A binary classification approach is employed to assess the social acceptability of
each tracklet, categorizing them as either “social” or “non-social”. This classification
is achieved using a social value function, defined as:

SVi(tri(s;, ar)) = VY (tri(se, ar), Wsy) 4.31)
where 1, (-) represents a Gated Recurrent Unit (GRU) [36] combined with a Multi-

Layer Perceptron (MLP), and W;, denotes the weights of this combined model.
As illustrated in Fig. 4.12, the GRU-MLP model consists of four fully connected
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layers, employing ReLLU nonlinear activation functions and batch normalization. By
incorporating the social value function into the action selection process, the final
optimal strategy for robot navigation, augmented with the social module, becomes:

7*(s!") = arg max[R, (7", a) + y 2oV (s ) + ks SVir(s]" a))] (4.32)

where k; represents the weight or coefficient assigned to the social value during
robot navigation. This coefficient allows for tuning the relative importance of social
considerations compared to other factors, such as reward and value. The value of k;
can be adjusted based on various robot parameters, including speed, time step, and
the specific social context. This tunability allows for fine-grained control over the
robot’s social behavior.

The online update mechanism for the social module is detailed in Algorithm 3.
Initially, a buffer 7; is employed to continuously collect the states of both the robot
and the surrounding humans. Once this buffer is filled (line 1), the states forming
the robot’s most recent tracklet and the states comprising the humans’ most recent
tracklets are processed separately (lines 2-3). When the number of stored robot
tracklets reaches a predefined threshold (line 4), the effectiveness of the social module
is evaluated.

A crucial step involves determining the labels (i.e., social or non-social) for the
states within a subset of the most recent K, human tracklets (lines 3 and 7). Tra-
ditional methods often rely on the simplifying assumption that all human behavior
is inherently social [37-39]. Here, a more nuanced labeling approach is proposed.
Specifically, the “extra distance ratio” metric (defined in Sect. 2.2.2.3) is used:

d,
Rgist = d_; (4.33)

where d; represents the Euclidean distance between the start and end points of a
tracklet, and d, denotes the actual path length of the tracklet. According to [40],
a higher Ry value indicates more socially efficient movement. Consequently, if a
tracklet’s Rgis exceeds a predetermined threshold, all states within that tracklet are
labeled as social, otherwise, they are considered non-social (line 5). This method
provides the robot with information about the external social context. The robot then
infers its internal social context through the output of the social module (line 6).
Finally, if the binary classification accuracy between the externally observed social
context (from human tracklets) and the internally perceived social context (from
the robot’s social module) falls below a certain threshold (indicating a significant
discrepancy, line 8), the social model is updated (line 12). The same Rg;s-based
labeling method is applied to label both the human tracklet set 7r; (line 9) and the
robot tracklet set T'r, (line 10). The new training dataset D, is then constructed,
comprising the labeled human tracklets 7'r; and the non-social robot tracklets from
Tr, (line 11). Importantly, to mitigate overfitting, both the robot and human tracklet
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Algorithm 3 Online social context learning

Require: v, (-, W,): Social neural network,
T;: Buffered human and robot states at time 7,
Lirax: Input dimension of vy,

Tr,: Set of robot tracklets,

Try: Set of human tracklets,

T'ry,: Set of recent human tracklets,
Kyp: Update threshold,

Kacc: Accuracy threshold

Ensure: v, (-, W,): Social neural network

1: if |T;| mod Lyax = O then

2: Tr, < Most recent robot tracklet (Lyax X 57)

3. Try, Tr,/l < Most recent human tracklets (Lgax X SZ) X n
4. if |Tr,| mod Kyp = 0 then

5: Yr, < label(T'r,)

6: YTr,'l « ¢sv(Tr;,s Wsv)

7: Tr, < ¢

8: if binary_acc(YT,/’, )A’Tr};) < Kacc then

9: Y7y, < label(Try)

10: Y7, < label(Tr,)

11 Duew < [Try, Yy, 1U{(x, y) € Try Yrv, | y = 0}
12: Wy < train(Dyew)

13: Tr, <0

14: Try, <@

15: end if

16:  end if

17: end if

sets are cleared (lines 13 and 14) after each update, preventing the model from
becoming overly specialized to previously observed data. The hyperparameters L;q,
Kyp, and K. require careful tuning for optimal performance.

4.7 Conclusion

This chapter presented a comprehensive overview of Robot Online Learning (ROL),
a paradigm that empowers robots to autonomously learn and adapt during operation,
eliminating the need for direct human intervention. We began by introducing the
core concept of ROL and subsequently articulated its significance within the broader
field of robot learning. We argued that ROL represents a crucial step towards truly
autonomous robots and offers a means to overcome inherent limitations of tradi-
tional offline learning methods. We then identified two key challenges that must be
addressed to realize the full potential of ROL.: first, the challenge of autonomous sam-
ple extraction, enabling robots to glean valuable learning information directly from
their sensor data; and second, the critical issue of mitigating catastrophic forgetting
during long-term online learning. To address these challenges, we presented several



92 4 Robot Learning

promising approaches. For autonomous sample extraction, we discussed methods
based on positive—negative (P-N) learning and knowledge transfer. To combat catas-
trophic forgetting, we introduced a gate-controlled Long Short-Term Online Learn-
ing (LSTOL) architecture. Finally, we illustrated the practical application of ROL by
demonstrating its effectiveness in enhancing socially-compliant robot navigation.

While the research presented in this chapter showcases encouraging progress
in the field of autonomous robot learning, significant challenges remain. One par-
ticularly pressing issue is the development of a robust mechanism for robots to
autonomously determine convergence during online learning and subsequently main-
tain stable model performance. A key obstacle in addressing this challenge stems
from the fundamental premise of ROL: the absence of human intervention. This
lack of explicit ground truth makes it difficult for the robot to evaluate the real-time
performance of its learning model, to ascertain whether learning has converged, and
to decide when further model updates are necessary to maintain stability. Currently,
the robotics community lacks a definitive solution to this crucial problem. Exist-
ing research primarily focuses on theoretical analyses grounded in Lyapunov theory
and offline evaluations of ROL models. Future work must directly confront this
challenge, developing practical methods for autonomous convergence detection and
stable model maintenance in long-term ROL scenarios. This will be a critical step
in transitioning ROL from theoretical promise to real-world deployment, enabling
robots to learn and adapt continuously and reliably in dynamic and unpredictable
environments.
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Conclusions and Perspectives e

Abstract This chapter summarizes the full text and gives prospects for future
research.

Keywords Mobile robotics + Robot perception - Robot learning -+ Human-aware
navigation + Long-term autonomy

5.1 General Conclusions

Intelligent mobile robotics has witnessed remarkable advancements over the past two
decades. This book has focused on two crucial aspects: robot perception and robot
learning, with downstream applications in human-aware robot navigation and long-
term robot autonomy. It began by addressing the critical, yet challenging, problem of
benchmarking in mobile robotics (see Chap. 2). The discussion encompassed three
key areas: standardizing evaluation procedures, developing common testbeds, and
creating open datasets. It then presented our work on robot perception (see Chap. 3)
and robot learning (see Chap. 4), respectively. It is important to note that these
two research areas are both independent and complementary. Robot learning relies
on the data provided by robot perception, while the knowledge acquired through
learning can, in turn, enhance the robot’s perceptual capabilities. Our focus in robot
perception was on the use of 3D lidar and the processing of resulting point cloud data.
The corresponding chapter provided a review of 3D lidar, considering its operating
principles, scanning architectures, physical characteristics, data representation, and
industrial applications. Subsequently, it introduced object detection and tracking
techniques based on 3D lidar data, including a representative method, “adaptive
clustering”, which demonstrated a favorable balance between processing speed and
clustering accuracy compared to similar methods at the time. In the realm of robot
learning, this book explored the Robot Online Learning (ROL) paradigm, discussing
its motivation, challenges, illustrative examples for object detection, a method for
mitigating catastrophic forgetting, and an approach to improve socially-compliant
robot navigation.
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5.2 Research Perspectives

ROL is undoubtedly a research direction ripe for continued exploration. As noted in
Chap. 4, ROL faces the inherent challenge of “lack of ground truth” due to the absence
of human intervention. A promising avenue for addressing this challenge lies in the
synergistic combination of Online Learning (OL) and Reinforcement Learning (RL),
recognizing the robot as an active agent within its environment. This approach can be
viewed as a natural extension of the research presented in Sect. 4.6, but with a tighter
coupling between OL and RL. Specifically, this integrated framework would enable
the robot to acquire high-confidence learning samples through interaction with the
environment [2] and to evaluate the performance of learned models online using
real-time feedback. It is important to acknowledge that this active learning paradigm
necessitates careful consideration of robot ethics, including, but not limited to, safety,
privacy, and accountability.

Another compelling research direction involves endowing robots with the capacity
for intuitive prediction or “guessing”. While human-human interaction can often
be seamless, as exemplified by collaborative work in a logistics warehouse, the
introduction of mobile robots can introduce complexities and ambiguities.! One
potential contributing factor is the current lack of human-like intuition in robots,
such as the ability to anticipate or guess, a crucial driver of instantaneous and smooth
interaction. Guessing is a fascinating human cognitive activity, a creative process
blending rationality and what might appear as irrationality. Crucially, guessing is
not arbitrary, it is often informed by prior learning. If robots are to be granted this
capability, connectionist-based approaches may prove particularly fruitful.

Finally, engineering considerations in robotics warrant continuous attention.
While the robotics community may not have reached a consensus on whether engi-
neering falls squarely within the realm of research, this book advocates for the view
that the essence of robotics lies in system integration. This perspective is supported
by researchers at Berkeley, who have highlighted the significant gap between Al and
systems, emphasizing the rich potential for research in this area [1]. The emergence
of IEEE Robotics and Automation Practice further underscores the community’s
growing recognition of this issue. Enabling model deployment on edge devices is of
paramount importance. Beyond facilitating long-term robot autonomy, edge deploy-
ment can also circumvent numerous data privacy concerns. Furthermore, we can
explore the integration of ROL with federated learning to further enhance privacy.
Achieving these objectives requires explicit consideration of the limited computa-
tional resources and low power requirements of robots, posing significant challenges
to algorithm optimization and software-hardware integration.
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